Hydraulika wybranych złóż biologicznie czynnych

Michał Palica Politechnika Śląska w Gliwicach

Klaudia Chmiel, Jerzy Waluś OBR "Barowent" Katowice

Recenzent: Tadeusz Piecuch Politechnika Koszalińska

1. Cel i zakres badań

W pracy przedstawiono wyniki własnych badań oporów przepływu przez następujące złoża naturalne:

- torf kwaśny
- kora z drzew liściastych
- złoże poprodukcyjne z hodowli pieczarek
- słoma pszeniczna
- zręby drzewne
- ziemia kompostowa
- wrzos.

Badania te prowadzono w zakresie liniowej prędkości gazu liczonej na pusty przekrój kolumny $w \approx 0.052 \div 0.18$ m/s.

Kolumna o przekroju kołowym ($F = 0.024 \text{ m}^2$) wypełniona była złożem o wysokości $H = 0.43 \div 0.46 \text{ m}$, spoczywającym na ruszcie zabezpieczonym siatką od dołu i warstwą gąbki poliuretanowej od góry, zaś przepływ gazu odbywał się od dołu do góry. Jako medium robocze używano powietrza o stabilizowanej temperaturze ($t = 30^{\circ}$ C) i wilgotności względnej ($\varphi = 70\%$), regulowanych komputerowo. Wielkościami mierzonymi były objętościowe natężenie przepływu powietrza wilgotnego i spadek ciśnienia na złożu.

Celem pracy było określenie funkcji $\Delta P = f(w)$ w stosowanym w badaniach zakresie zmienności w i porównanie wyników z dostępnymi danymi.

2. Wprowadzenie

Złoża biologicznie czynne są coraz powszechniej używane w dezodoryzacji. Wynika to głównie z ich dostępności i relatywnie niskiej ceny, jak również z dobrej na ogół skuteczności dla wielu odorantów, m.in. węglowodorów alifatycznych, aromatycznych, związków zawierających tlen, alkoholi, eterów, aldehydów, ketonów, kwasów organicznych, estrów, fenoli, związków zawierających siarkę lub azot, związków heterocyklicznych, pochodnych nitrowych, chlorowcopochodnych i innych [1].

Bakterie heterotroficzne znajdujące się na takich złożach mają zdolność przyswajania szeregu zanieczyszczeń występujących w gazach.

W największym uproszczeniu proces biologicznego rozkładu związków organicznych można opisać w postaci reakcji:

 $zanieczyszczenia + O_2 \rightarrow CO_2 + H_2O$

Szklarczyk ([2]) podaje (na podstawie obszernych studiów literaturowych) czynniki środowiskowe wpływające na aktywność bakterii biorących udział w procesie rozkładu zanieczyszczeń:

- dostępność pokarmu
- wilgotność złoża
- promieniowanie
- ciśnienie osmotyczne
- odczyn
- temperatura
- szkodliwe substancje chemiczne.

O skali problemu świadczy przy tym, że w oparciu o oceny Branżowych Komisji EWG wysokość inwestycji w zakresie biologicznej ochrony powietrza w Europie Zachodniej przekroczyła w 1994 r. 1 mld DEM, a w r. 2000 nakłady te mają by 11-krotnie wyższe, co potwierdza potencjał rozwojowy metod biologicznych, służących do oczyszczania gazów. Pewne działania w tej dziedzinie zostały podjęte również w Polsce [3,4,5]. Z analizy tych danych wynika, że inne metody, które były dotąd chętnie stosowane (absorpcja, chemisorpcja, metoda Kurmeiera, dopalania, adsorpcja czy ozonowanie) obecnie używane są rzadziej, a wynika to ze względów ekonomicznych. Np. Kozłowska [6] podaje, że użycie biofiltrów jest kilkakrotnie tańsze, niż innych metod unieszkodliwiania zapachowego odorantów. Dlatego w OBR "BAROWENT" prowadzone są badania dotyczące wykorzystania złóż biologicznie czynnych do usuwania wybranych związków złowonnych.

Żłoża takie można określić jako porowate, podobnie jak złoża nieruchome reaktorów katalitycznych, kolumny wypełnione czy osady filtracyjne.

86 ·

Użycie takich złóż wymaga znajomości ich hydrauliki, czyli równań opisujących opory przepływu w funkcji liniowej prędkości gazu (zwykle liczonej na niewypełniony przekrój aparatu). Ze względu na różne własności złóż (porowatość, jednostkową powierzchnię rozwiniętą, kształt i wielkość cząstek tworzących złoże) można oczekiwać, że dla każdego z nich będzie obowiązywać indywidualne równanie na ΔP . Dlatego konieczne są w tym przypadku badania hydrauliki i odpowiedni ich opis.

3. Przegląd sposobów opisu hydrauliki złóż porowatych

3.1. Równanie ogólne

Dokładny opis parametrów wpływających na opory przepływu przez złoża nieruchome podaje Mokrosz [7]. Z jego wyprowadzenia, dla złóż biologicznie czynnych, traktowanych jako niezraszane, można podać ogólną funkcję na spadek ciśnienia w funkcji prędkości gazu

$$Eu = C \cdot Re^{A} \tag{1}$$

gdzie:

$$Eu = \frac{\Delta P}{\rho \cdot w^2} \tag{2}$$

$$\operatorname{Re} = \frac{\rho \cdot w \cdot d_e}{\eta} \tag{3}$$

W liczbie Re występuje d_e - średnica ekwiwalentna wypełnienia, związana z porowatością i jednostkową powierzchnią wypełnienia

$$d_e = \frac{4 \cdot \varepsilon}{a} \tag{4}$$

Pomiarowe wyznaczenie ε dla złóż biologicznych stanowi odrębny problem badawczy. W przypadku złóż o regularnym i powtarzalnym kształcie wyznaczenie d_e lub *a* jest możliwe na bazie wymiarów geometrycznych. Dla złóż biologicznie czynnych, składających się z elementów o różnej granulacji i kształcie, określenie d_e wymaga żmudnych badań statystycznych dla każdego złoża, co nie zawsze jest możliwe, dlatego atrakcyjne stają się wówczas inne ujęcia, omijające wyznaczenia d_e .

3.2. Równanie Żaworonkowa

Równanie Żaworonkowa ([8]), obowiązujące dla złóż regularnych, wprowadza do zależności $\Delta P = f(w)$ współczynnik oporu f

$$\Delta P = \frac{2 \cdot f}{\varepsilon^2} \cdot \frac{g_0^2}{\rho} \cdot \frac{H}{d_e} = \frac{2 \cdot f \cdot \rho \cdot w^2 \cdot H}{\varepsilon^2 \cdot d_e}$$
(5)

Środkowo-Pomorskie Towarzystwo Naukowe Ochrony Środowiska

87

gdzie dla

$$\operatorname{Re}_{\dot{L}} = \frac{w \cdot \rho \cdot d_{e}}{\varepsilon \cdot \eta} \tag{6}$$

przy $Re_{\dot{Z}} < 50$

$$f = \frac{100}{\operatorname{Re}_{z}} \tag{7}$$

 $50 \le Re_{\dot{Z}} \le 7000$

$$f = \frac{3.8}{\text{Re}_{L}^{0.2}}$$
(8)

 $Re_{\dot{Z}} > 7000$

$$f = \frac{C}{\operatorname{Re}_{f}^{0.375}} \tag{9}$$

Określenie zakresu ważności zależności (7), (8) i (9) wymaga znajomości d_e , a więc występuje ten sam problem, co w przypadku ogólnego ujęcia oporów przepływu.

Przy opracowywaniu wyników można wprawdzie założyć zakres na Re_{z} , wyniki pomiarowej funkcji $\Delta P = f(w)$ opracować dla tak założonego zakresu i rozwikłać szczegółową funkcję (5) ze względu na d_e . Jeśliby wartości d_e wyznaczone w oparciu o pomiary $\Delta P = f(w)$ byłyby stałe, oznaczałoby to, że zakres Re_{z} został założony poprawnie. Jednak nakładanie się na wyliczone wartości d_e błędów pomiarowych może spowodować znaczący rozrzut d_e i fałszywą ocenę zakresu obowiązywania odpowiedniego wzoru na f.

3.3. Ujęcie Levy

Leva [8] proponuje następujące ujęcie oporów przepływu przez złoże porowate:

$$\Delta P = \alpha \cdot \frac{g_0^2}{\rho} \cdot H \tag{10}$$

obowiązujące w przypadku, gdy nie trzeba uwzględniać tzw. efektu ściany, a zakres w odpowiada przepływowi burzliwemu, który na ogół spotyka się w instalacjach przemysłowych.

Dla

$$g_0 = w^{\cdot} \rho \tag{11}$$

uzyskuje się zależność

$$\Delta P = \alpha^{\cdot} \rho^{\cdot} H^{\cdot} w^2 \tag{12}$$

którą można wykorzystać bezpośrednio do korelowania wyników doświadczeń.

3.4. Ujęcie Erguna

Ergun [9] proponuje, by w jednym równaniu ująć opory przepływu pochodzące od członu laminarnego i burzliwego, przy wykorzystaniu wyznaczonego doświadczalnie współczynnika oporów przepływu przez złoże porowate w postaci:

$$f_p = \frac{150}{\text{Re}_p} + 1.75 \tag{13}$$

gdzie:

$$\operatorname{Re}_{p} = \frac{w \cdot \rho \cdot d_{e}}{(1 - \varepsilon) \cdot \eta}$$
(14)

Dla niskich Re_p ($Re_p < 1$)

$$f_p = \frac{150}{\operatorname{Re}_p} \tag{15}$$

dla wysokich Re_p ($Re_p > 10^4$)

$$f_p = 1.75$$
 (16)

W zakresie $1 < Re_p < 10^4$ obowiązuje zależność (13).

Podstawiając (13) do wzoru na ΔP można wyznaczyć jednostkowe opory przepływu:

$$\frac{\Delta P}{H} = 150 \cdot \frac{(1-\varepsilon)^2}{\varepsilon^3} \cdot \frac{w \cdot \eta}{d_e^2} + 1.75 \cdot \frac{1-\varepsilon}{\varepsilon^3} \cdot \frac{\rho \cdot w^2}{d_e}$$
(17)

Ze wzoru tego wynika, że spadek ciśnienia wskutek tarcia jest proporcjonalny do członu $\frac{(1-\varepsilon)^2}{\varepsilon^3}$, zaś wskutek burzliwości do członu $\frac{(1-\varepsilon)}{\varepsilon^3}$. Również w tym ujęciu niezbędna jest do opisu ΔP znajomość d_e .

3.5. Ujęcie oporów przepływu przy użyciu pojęcia przepuszczalności

Carman [10] wprowadza w członie laminarnym zależności (17) pojęcie przepuszczalności B_0 w postaci:

$$\frac{\Delta P}{H} = \frac{k \cdot (1 - \varepsilon)^2}{\varepsilon^3} \cdot S_0^2 \cdot \eta \cdot w = \frac{\eta \cdot w}{B_0}$$
(18)

$$B_0 = \frac{1}{k \cdot S_0^2} \cdot \frac{\varepsilon^3}{(1 - \varepsilon)^2}$$
(19)

ujmującej równocześnie indywidualne dla każdego wypełnienia stałe k i S_0 .

Dla wypełnień włóknistych, do których można w przybliżeniu aproksymować złoża naturalne

Środkowo-Pomorskie Towarzystwo Naukowe Ochrony Środowiska

$$B_0 = \frac{d_e^2}{16 \cdot k} \cdot \frac{\varepsilon^3}{(1 - \varepsilon)^2}$$
(20)

przy czym k zależy również od porowatości złóż.

Zestawienie literaturowych wartości k dla różnych ε wg wielu autorów podano w tablicy 2 pracy [11].

4. Inne ujęcia oporów przepływu

Podobne do Carmana ujęcie proponuje Brown i współautorzy ([12]), przy czym wymagane jest obliczenie d_e dla cząstek o różnej średnicy wg wzoru

$$d_e = \sqrt{\frac{\sum_{i} u_i \cdot d_i}{\sum_{i} u_i \cdot d_i^3}}$$
(21)

d_i - średnica cząstek dla każdej frakcji

u_i - udział masowy poszczególnych frakcji

zaś stała k w zależności (18) może być nieco inna od tej, którą przewiduje Carman.

Najbardziej precyzyjne ujęcie oporów przepływu laminarnego proponuje Brauer ([13]):

$$\frac{\Delta P}{H} = 18 \cdot \varphi_{\varepsilon} \cdot \frac{(1-\varepsilon)^2}{\varepsilon^3} \cdot \frac{\eta \cdot w}{d_e^2} = \psi \cdot \operatorname{Re}_p \cdot \frac{(1-\varepsilon)^2}{\varepsilon^3} \cdot \frac{\eta \cdot w}{d_e^2}$$
(22)

gdzie:

$$\varphi_{\varepsilon} = \frac{k}{2}$$

Teoretyczna funkcja Brauera na φ_{ε} obowiązująca w całym zakresie ε ma postać:

$$\varphi_{\varepsilon} = \frac{\varepsilon^{3}}{1 - \varepsilon} \cdot \frac{1 + \frac{2}{3} \cdot (1 - \varepsilon)^{\frac{5}{3}}}{1 - \frac{3}{2} \cdot (1 - \varepsilon)^{\frac{1}{3}} + \frac{3}{2} \cdot (1 - \varepsilon)^{\frac{5}{3}} - (1 - \varepsilon)^{2}}$$
(23)

Empiryczna zależność współczynnika oporów przepływu ψ obowiązująca w przepływie burzliwym ma wg Brauera [13] postać:

$$\psi = \frac{160}{\text{Re}_p} + \frac{3.1}{\text{Re}_p^{0.1}}$$
(24)

zaś dla przepływu laminarnego

$$\psi = \frac{18 \cdot \varphi_{\varepsilon}}{\text{Re}_{p}}$$
(25)

- Środkowo-Pomorskie Towarzystwo Naukowe Ochrony Środowiska

90 -

Brauer proponuje inaczej obliczać średnicę zastępczą cząstki:

$$d_{e} = \frac{1}{\left(\frac{V_{e1}}{V_{e}}\right) \cdot d_{e1}^{-1} + \left(\frac{V_{e2}}{V_{e}}\right) \cdot d_{e2}^{-1} + \dots + \left(\frac{V_{en}}{V_{e}}\right) \cdot d_{en}^{-1}}$$
(26)

gdzie:

 $\frac{V_{en}}{V_e}$ - udział objętościowy poszczególnych frakcji d_{en} - średnica ziaren każdej frakcji.

Do oryginalnych ujęć oporów przepływu przez złoże porowate przy przepływie laminarnym należą również ujęcia Żaworonkowa [14], Kasatkina [15] i Ramma [16], Serwińskiego [17] oraz Brötza [18], obowiązujące dla przepływu laminarnego. Dają one nieznaczne różnice w stałych k w zależnościach na $\Delta P/H$. Znaczące odstępstwa (wyższe wartości $\Delta P/H$) przewidują jedynie zależności podane przez Chiltona i Colburna ([19]), a cytowana przez Hoblera ([8]). Ciekawe podejście do problemu przepływu laminarnego przez złoże porowate proponuje również Piecuch [20] w oparciu głównie o [9,10,12]]

Z zamieszczonego przeglądu różnych ujęć hydrauliki złóż porowatych wynika, że istnieje możliwość opisu oporów przepływu uwzględniająca obydwa człony (laminarny i burzliwy) i omijająca wyznaczanie średnicy ekwiwalentnej. Jest to ujęcie Erguna [9], w którym wykorzystane jest pojęcie przepuszczalności, wprowadzone przez Carmana [10].

Zgodnie z [10] można zależność (19) użyć w równaniu Erguna (17), uzyskując

$$\frac{\Delta P}{H} = k \cdot S_0^2 \cdot \frac{(1-\varepsilon)^2}{\varepsilon^3} \cdot \eta \cdot w + \frac{1.75}{\sqrt{150}} \cdot \sqrt{k \cdot S_0^2} \cdot \frac{1}{(1-\varepsilon)} \cdot \left(\sqrt{\frac{(1-\varepsilon)^2}{\varepsilon^3}}\right)^2 \cdot \rho \cdot w^2 \quad (27)$$

Ponieważ

$$B_0 = \frac{1}{k \cdot s_0^2} \cdot \frac{\varepsilon^3}{(1 - \varepsilon)^2}$$
(19a)

po wprowadzeniu (19a) do (27) i rozwikłaniu tej zależności ze względu na B_0

$$B_0 - \frac{1.75}{\sqrt{150}} \cdot \frac{1}{\sqrt{\varepsilon^3}} \cdot \rho \cdot w^2 \cdot \frac{H}{\Delta P} \cdot \sqrt{B_0} - \frac{\eta \cdot H \cdot w}{\Delta P} = 0$$
(28)

Oznaczając

$$B_0 = Y^2 \tag{29}$$

uzyskuje się równanie kwadratowe ze względu na *Y*. Dla realnej wartości *Y* jego rozwiązaniem jest wyrażenie:

Środkowo-Pomorskie Towarzystwo Naukowe Ochrony Środowiska

91

$$Y = \sqrt{B_0} = \frac{1}{2} \cdot \left(\frac{1.75}{\sqrt{150}} \cdot \frac{\rho \cdot w^2}{\sqrt{\varepsilon^3}} \cdot \frac{H}{\Delta P} + \sqrt{\frac{1.75^2}{150}} \cdot \frac{\rho^2 \cdot w^4 \cdot H^2}{\varepsilon^3 \cdot \Delta P^2} + 4 \cdot \frac{w \cdot \eta \cdot H}{\Delta P} \right)$$
(30)

W równaniu tym można przeanalizować dwa człony: burzliwy, odpowiadający

wyrażeniu
$$\frac{1.75}{\sqrt{150}} \cdot \frac{1}{\sqrt{\varepsilon^3}} \cdot \frac{\rho \cdot w^2 \cdot H}{\Delta P}$$
 i laminarny, opisany jako $\frac{4 \cdot \eta \cdot w \cdot H}{\Delta P}$.

Liczbowe wartości tych członów zależą od prędkości *w*. Dla niskich *w* człon burzliwy można pominąć, dla wysokich *w* można zaniechać człon laminarny. Istnieje jednak obszar, w którym obydwa człony są współmierne.

Drugim możliwym do przyjęcia sposobem opisu hydrauliki złóż jest zależność Leva'y w postaci

$$\frac{\Delta P}{H} = \alpha \cdot \rho \cdot w^2 \tag{31}$$

Jej zaletą jest prostota i łatwość opisu w oparciu o dane pomiarowe, ale opiera się ona na założeniu, że zakres przepływu odpowiada zakresowi burzliwemu.

Formalnie równość wzoru Erguna (przy pominięciu członu laminarnego) i Leva'y sprowadza się do opisu α jako

$$\alpha = \frac{1.75}{4\sqrt{k}} \cdot \frac{1}{\varepsilon^{3/2}} \cdot \frac{1}{\sqrt{B_0}}$$
(32)

a więc empiryczna wartość α wg Leva'y jest szczególnym przypadkiem zależności Erguna w zakresie przepływu burzliwego. Dla wypełnień włóknistych zależność (32) przybiera formę (k = 9.375):

$$\alpha = \frac{1.75}{\sqrt{150}} \cdot \frac{1}{\varepsilon^{3/2}} \cdot \frac{1}{\sqrt{B_0}}$$
(33)

Jak widać z zamieszczonego przeglądu ujęć oporów przepływu przez złoża porowate istnieję dwa sposoby opisu hydrauliki złóż:

- ujęcie ścisłe Erguna, które w oparciu o pojęcie przepuszczalności, wprowadzone przez Carmana, pozwala ominąć operowanie średnicą ekwiwalentną d_e i obowiązuje w całym zakresie zmienności w,
- ujęcie Leva'y, w którym wszystkie współczynniki liczbowe zawarte są w wielkości α , ale które dotyczy jedynie zakresu burzliwego.

Problemem pojawiającym się w formalnym porównaniu wzoru Erguna i Leva'y dla przepływu burzliwego wg (31) jest przyjęcie k. Wynika stąd, że jeśli dane pomiarowe można wyrównać w układzie współrzędnych

$$\frac{\Delta P}{\rho \cdot H} = f\left(w^2\right) \tag{34}$$

to korzystniej jest stosować prostszy wzór Leva'y, niż złożoną zależność Erguna. W niniejszej publikacji dane pomiarowe opracowano obydwoma sposobami, przy czym w przypadku korzystania z pojęcia przepuszczalności, zależność na opory przepływu przyjmuje formę:

$$\frac{\Delta P}{H \cdot \rho} = \frac{\eta \cdot w}{\rho \cdot B_0} + \frac{1.75 \cdot w^2}{\sqrt{150 \cdot \varepsilon^3 \cdot B_0}}$$
(35)

5. Instalacja doświadczalna

Instalacja doświadczalna składa się z kolumny z badanym złożem, układu podawania powietrza wraz z systemami regulacyjno-pomiarowymi oraz układu dozowania odorantu. Schemat instalacji pokazano na rys. 1.

Powietrze pobierane do instalacji przepływa przez filtr z węglem aktywnym *1* i elektryczną nagrzewnicę 2, gdzie jest wstępnie podgrzewane do żądanej temperatury, nastawianej za pomocą regulatora temperatury. Za nagrzewnicą znajduje się kryza pomiarowa 3, gdzie za pomocą mikromanometru różnicowego jest mierzony spadek ciśnienia i przeliczany na przepływ gazu. Ilość przepływającego powietrza jest obliczana z uwzględnieniem jego temperatury i ciśnienia mierzonego manometrem barometrycznym umieszczonym również na wejściu do kryzy. Dodatkowym zadaniem manometru barometrycznego jest pomiar ciśnienia atmosferycznego, co jest ważne na początku pomiaru, kiedy przepływ jest wyłączony i ciśnienie wewnątrz aparatury jest równe ciśnieniu zewnętrznemu. Charakterystykę kryzy wprowadzono do programu sterującego. Na podstawie pomiaru różnicy ciśnień na kryzie, wielkości zmierzonego ciśnienia wejściowego oraz temperatury, układ sterujący przelicza przepływ na warunki normalne.

Ogrzane powietrze jest wprowadzane do mieszalnika 4, do którego jest doprowadzana para wodna z odparowalnika ogrzewanego za pomocą grzałki 5. Parametry gazów po komorze mieszania, tzn. temperatura i wilgotność powietrza nawilżonego parą wodną, są wprowadzane do układu pomiarowosterującego, wykonanego w postaci komory pomiarowej 6, w której znajdują się dwa termometry - suchy 12 i mokry 11. Jako termometry są stosowane czujniki Pt-100 z tym, że termometr mokry posiada czujnik owinięty bibułą, której koniec znajduje się w naczyniu z wodą destylowaną (naczynie z wodą umieszczone jest w tej samej komorze pomiarowej 6, aby uniknąć błędu spowodowanego różnicą temperatur *gaz-otoczenie*). Pomiarów wilgotności dokonywano przy użyciu termometrów 11 i 12, korzystając z zapisanych w programie sterowania tablic psychrometrycznych. Na podstawie danych pomiarowych program komputerowy steruje pracą całej instalacji.

1 - filtr węglowy, 2 - nagrzewnica powietrza, 3 - układ pomiaru ilości powietrza, 4 - mieszalnik gazów, 5 - dozownik pary, 6 - komora pomiarowa, 7 - generator odorów, 8 - układ poboru prób, 9 - skruber ze złożem, 10 - dmuchawa z płynną regulacją wydajności, 11 termometr mokry, 12 - termometr suchy, 13 - termometr

Fig. 1. Scheme of the experimental set-up

1-coal filter, 2-air heater, 3-air capacity measurement system, 4-mixer of gases, 5-vapour dispenser, 6-measuring cell, 7-odour generation system, 8-withdrawal of samples, 9-scrubber with packed bed, 10-valve-regulated blower, 11-wet-bulb thermometer, 12-dry-bulb thermometer, 13-thermometer

Do odpowiednio nawilżonego i ogrzanego powietrza jest dozowany odorant w ściśle określonej ilości z układu generacji 7. Tak przygotowane powietrze przepływa w skruberze 9 przez warstwę wypełnienia czynnego, w której zachodzi proces dezodoryzacji. Na wyjściu z kolumny znajduje się druga komora pomiarowa 6, również zawierająca termometr suchy 12 i mokry 11. W oparciu o dane z tych czujników jest obliczana temperatura i wilgotność wyjściowa. Opuszczające układ powietrze jest zasysane przez dmuchawę 10 i kierowane do atmosfery. Próbki gazu do oznaczeń zawartości odoru są pobierane przed i za skruberem 8 przez układ poboru prób i analizowane metodą chromatografii gazowej.

W omawianych badaniach hydrauliki złóż biofiltracyjnych dozowanie odorantu (trietyloaminy, butanolu, merkaptanu) miało znaczenie drugorzędne. Istotne jest usytuowanie punktów pomiaru spadku ciśnienia na badanych złożach. W wyniku analizy możliwości aparaturowych zdecydowano, by znajdowały się one bezpośrednio przed wlotem gazu do biofiltru i w króćcu wylotowym po biofiltrze. Część badań wykonano dla czystego powietrza, natomiast badania kontrolne dla powietrza zawierającego odoranty potwierdziły, że rezultaty badań hydrauliki dla powietrza czystego i zanieczyszczonego przy określonych *w* są praktycznie takie same.

6. Wyniki pomiarów i obliczeń

Wyniki pomiarów ΔP dla zadanych w zestawiono w tablicach 1÷7. Wartości w wyznaczano jako ([20])

$$w = \frac{V}{F} \tag{36}$$

lub z bezpośredniego pomiaru prędkości anemometrem na otwartym rurociągu wlotowym do instalacji. Prędkość tą przeliczano następnie na prędkość w pustej kolumnie.

Ponieważ w zależnościach Erguna, Carmana i Leva'y występuje ρ , uściślono wyliczanie gęstości powietrza, traktując je jako wilgotne. Korzystano w tym celu ze wzorów [21]

$$\rho = \frac{1+Y}{22.4 \cdot \left(\frac{1}{M_{H_2O}} + \frac{1}{M_{pow}}\right) \cdot \frac{T}{273}}$$
(37)
$$Y = 0.622 \cdot \frac{\varphi \cdot \left(p_{H_2O}\right)_s}{P - \left(p_{H_2O}\right)_s}$$
(38)

Środkowo-Pomorskie Towarzystwo Naukowe Ochrony Środowiska

95

$$\varphi = \frac{p_{H_2O}}{\left(p_{H_2O}\right)_s} \tag{39}$$

$$P = P_b - P_{st} \tag{40}$$

gdzie:

Pst odpowiada podciśnieniu przed kolumną.

Dynamiczny współczynnik lepkości powietrza wilgotnego wyznaczano jako [22]

$$\eta = \frac{\varphi_{H_2O} \cdot \eta_{H_2O} \cdot \sqrt{M_{H_2O} \cdot T_{krH_2O}} + \varphi_{pow} \cdot \eta_{pow} \cdot \sqrt{M_{pow} \cdot T_{krpow}}}{\varphi_{H_2O} \cdot \sqrt{M_{H_2O} \cdot T_{krH_2O}} + \varphi_{pow} \cdot \sqrt{M_{pow} \cdot T_{krpow}}}$$
(41)

korzystając z tablicowych wartości $\sqrt{M_{H_2O} \cdot T_{krH_2O}}, \sqrt{M_{pow} \cdot T_{krpow}}, \eta_{H_2O}$ i η_{pow} w temperaturze 30°C.

W tablicach 1÷7 zamieszczono ponadto następujące dane:

 $\frac{\Delta P_{zm}}{H \cdot \rho}, \frac{\Delta P_L}{H \cdot \rho} \text{ (przy czym } \Delta P_L \text{ dotyczy wzoru Leva'y)}, \frac{\Delta P_{B_{0ir}}}{H \cdot \rho} \text{ (} \Delta P_{B_{0ir}} \text{ wyzna-}$

czono dla $B_{0 \ sr}$) oraz $\frac{\Delta P_{B_0}}{H \cdot \rho}$, gdzie ΔP_{B_0} oparto o skorygowaną wartość prze-

puszczalności:

$$B_0 = B_{0\,\text{sr}} + \Delta B_0 \tag{42}$$

$$\Delta B_0 = a \cdot w + b \tag{43}$$

Wartości współczynników liczbowych a i b dla poszczególnych złóż znajdują się w tablicy 8.

Dane pomiarowe wskazują, że poprawka ΔB_0 zmienia się liniowo z prędkością w w zakresie zmienności w stosowanym w badaniach.

Stwierdzono, że użycie w obliczeniach ΔP wartości B_0 śr daje dobrą zgodność pomiarów i obliczeń dla średnich prędkości użytych w pomiarach. Zgodność ta maleje dla skrajnych w stosowanych w kolumnie. Wprowadzenie poprawki ΔB_0 nie ma wprawdzie uzasadnienia teoretycznego, ale praktycznie w pełni uzgadnia wyniki pomiarów i obliczeń.

	<u> </u>	ΔP_{zm}	ΔP_I	$\Delta P_{B_{0,in}}$	ΔP_{B_0}
Lp. No.	<i>w</i> [m/s]	$\overline{H\cdot\rho} [\mathrm{m/s^2}]$	$\frac{L}{H \cdot \rho} [\mathrm{m/s^2}]$	$\frac{1}{H \cdot \rho} [\text{m/s}^2]$	$\frac{B_0}{H \cdot \rho} [\mathrm{m/s}^2]$
1	0.0533	470.8	420.9	531.1	414.5
2	0.0819	642.2	741.4	836.1	732.3
3	0.0643	528.4	527.9	647.6	527.6
4	0.0727	624.2	623.5	739.2	623.1
5	0.0860	720.7	798.4	885.7	789.4
6	0.0993	914.2	1002.4	1037.9	980.7
7	0.1044	1010.1	1087.8	1095.4	1059.2
8	0.1006	1168.3	1023.4	1061.0	1008.3
9	0.1157	1366.3	1293.5	1240.5	1265.3
10	0.1270	1566.1	1520.3	1380.7	1489.7
11	0.1413	1688.1	1837.6	1557.4	1812.8
12	0.1434	1933.1	1887.1	1597.5	1881.3
13	0.1618	2281.9	2351.5	1842.0	2417.0
14	0.1659	2432.4	2462.6	1907.9	2569.1
15	0.1638	2390.9	2405.3	1879.2	2497.0
16	0.1597	2285.1	2295.7	1819.6	2357.1
17	0.1577	2243.4	2243.2	1792.1	2293.2
18	0.1546	2196.5	2163.1	1744.8	2191.6
19	0.1434	1895.2	1887.1	1599.1	1883.1
20	0.1321	1682.6	1629.6	1441.1	1596.5
21	0.1229	1564.1	1435.6	1330.3	1405.9
22	0.1126	1382.9	1235.0	1203.0	1208.9
23	0.1085	1186.3	1160.0	1148.1	1131.6
24	0.0952	1049.2	936.4	995.1	923.1
25	0.0911	891.8	873.4	942.1	858.4
26	0.0809	700.0	727.7	827.1	721.3
27	0.0717	527.7	611.3	724.3	608.0
28	0.0563	470.4	448.8	562.1	444.0
29	0.0717	546.3	611.3	723.8	607.6
30	0.0881	797.4	827.7	909.4	817.6
31	0.1126	1148.5	1235.0	1195.3	1201.2
32	0.1300	1583.4	1584.1	1413.3	1548.6

Tabela 1. Wyniki pomiarów i obliczeń hydrauliki dla torfu

 Table 1. Experimental and calculated results of hydraulics for acid peat

		ΔP_{zm}	ΔP_L	$\Delta P_{B_{0,ir}}$	ΔP_{B_0}
Lp. No.	<i>w</i> [m/s]	$\overline{H\cdot\rho} [\mathrm{m/s^2}]$	$\overline{H\cdot\rho} [\mathrm{m/s^2}]$	$\overline{H\cdot\rho}$ [m/s ²]	$\overline{H\cdot\rho}$ [m/s ²]
1	0.0676	473.0	516.6	523.8	464.9
2	0.0819	494.8	618.8	640.9	587.8
3	0.0727	454.6	550.8	565.7	508.0
4	0.0870	570.0	660.0	685.0	635.7
5	0.0963	609.0	740.5	762.6	723.2
6	0.0983	647.6	759.4	780.4	743.7
7	0.1024	745.1	798.6	818.4	787.6
8	0.1075	804.2	849.6	863.9	841.7
9	0.1126	882.9	903.1	910.4	898.0
10	0.1229	1021.4	1018.6	1004.3	1016.3
11	0.1249	1042.0	1042.2	1023.5	1041.0
12	0.1341	1145.6	1155.8	1113.9	1159.7
13	0.1444	1269.1	1292.4	1214.8	1299.3
14	0.1556	1488.0	1452.5	1347.8	1485.4
15	0.1823	1674.2	1882.3	1607.2	1909.3
16	0.1597	1504.9	1514.1	1381.5	1539.6
17	0.1577	1454.4	1483.9	1347.5	1493.5
18	0.1423	1284.9	1263.8	1190.9	1266.6
19	0.1372	1242.3	1195.8	1140.5	1197.0
20	0.1331	1160.8	1143.0	1099.0	1141.3
21	0.1229	1116.9	1018.6	1003.1	1015.1
22	0.1126	996.3	903.1	907.8	895.5
23	0.1024	914.5	798.6	814.9	784.2
24	0.0717	662.2	543.8	556.5	498.6
25	0.0819	776.2	618.8	641.9	588.7
26	0.1382	1189.7	1209.0	1129.2	1188.2
27	0.1618	1651.1	1546.3	1385.1	1552.5
28	0.1434	1358.3	1278.7	1194.6	1274.3
29	0.0922	589.5	703.7	728.0	683.7
30	0.1024	744.6	798.6	817.5	786.7
31	0.1126	1058.1	903.1	913.7	901.3
32	0.1178	1098.0	960.2	959.8	959.0

Tabela 2. Wyniki pomiarów i obliczeń hydrauliki dla kory z drzew liściastych **Table 2.** Experimental and calculated results of hydraulics for bark from deciduous trees

Tabela 3. Wyniki pomiarów i obliczeń hydrauliki dla złoża pieczarkowego
Table 3. Experimental and calculated results of hydraulics for processed material in
mushroom production

		ΔP_{zm}	ΔP_L	$\Delta P_{B_{0\acute{u}r}}$	ΔP_{B_0}
Lp. No.	<i>w</i> [m/s]	$\overline{H \cdot \rho}$ [m/s ²]	$\overline{H \cdot \rho} ^{[m/s^2]}$	$\overline{H \cdot \rho}$ [m/s ²]	$\overline{H \cdot \rho} [\mathrm{m/s^2}]$
			-	,	,
1	0.0707	979.2	900.3	1022.1	920.9
2	0.0799	1060.5	1051.1	1165.9	1078.9
3	0.0881	1198.0	1200.7	1292.5	1225.5
4	0.0983	1418.2	1408.3	1459.2	1427.3
5	0.1116	1657.7	1712.0	1672.5	1705.8
6	0.1157	1800.2	1813.4	1744.8	1803.3
7	0.1208	1998.8	1944.6	1828.3	1921.5
8	0.1249	2147.2	2054.2	1908.1	2032.9
9	0.1311	2357.5	2226.8	2013.6	2190.8
10	0.1301	2345.9	2198.4	1992.5	2160.4
11	0.1280	2063.2	2139.5	1949.3	2098.6
12	0.1116	1694.7	1712.0	1669.4	1702.6
13	0.1024	1573.1	1497.8	1520.8	1506.6
14	0.0881	1254.0	1200.7	1289.4	1222.5
15	0.1044	1476.1	1542.8	1551.5	1546.7
16	0.0911	1273.4	1260.8	1335.7	1278.3
17	0.0717	1114.3	916.1	1038.1	938.1
18	0.0686	901.0	869.3	989.3	886.2
19	0.0666	783.2	839.1	953.8	849.5
20	0.0696	880.3	884.6	1001.5	899.8
21	0.0737	1036.4	948.5	1066.5	969.5
22	0.0891	1118.6	1220.6	1304.0	1240.2
23	0.1085	1533.6	1637.8	1612.8	1628.7
24	0.1208	1697.0	1944.6	1815.1	1907.6
25	0.1249	1877.4	2054.2	1886.3	2009.7
26	0.1300	1981.7	2195.6	1976.9	2142.8
27	0.1331	2165.9	2284.3	2036.0	2230.4
28	0.1434	2583.1	2594.1	2231.0	2533.7
29	0.1597	3413.6	3131.5	2515.6	3032.9

		ΔP_{zm}	ΔP_L	$\Delta P_{B_{0\acute{u}r}}$	ΔP_{B_0}
Lp. No.	<i>w</i> [m/s]	$\overline{H \cdot \rho} ^{[m/s^2]}$	$\overline{H \cdot \rho} ^{[m/s^2]}$	$\overline{H \cdot \rho} [\text{m/s}^2]$	$\overline{H \cdot \rho} ^{[m/s^2]}$
		,	,	/	,
1	0.0563	1123.0	1320.8	1038.7	1207.6
2	0.0512	1103.6	1278.3	942.8	1117.4
3	0.0717	1373.5	1472.6	1330.2	1463.4
4	0.0758	1623.4	1519.3	1409.9	1529.1
5	0.0655	1334.4	1407.5	1213.6	1364.4
6	0.0829	1608.9	1607.0	1552.2	1642.9
7	0.0901	1748.7	1702.8	2097.7	2168.2
8	0.0963	1940.6	1791.3	1891.6	1916.6
9	0.1024	1948.6	1885.5	1945.1	1932.7
10	0.1044	2026.6	1917.4	1985.1	1960.2
11	0.1106	2138.8	2020.3	2130.1	2063.4
12	0.1147	2199.0	2091.6	2213.4	2117.6
13	0.1300	2430.1	2380.7	2543.5	2326.2
14	0.1321	2453.1	2423.2	2591.1	2355.5
15	0.1638	2923.3	3147.4	4306.2	3588.6
16	0.1536	2767.6	2897.4	3093.8	2650.1
17	0.1526	2746.6	2873.8	3059.2	2627.5
18	0.1403	2609.7	2595.6	2788.2	2476.7
19	0.1249	2354.5	2280.3	2446.3	2270.6
20	0.1126	2036.8	2054.8	2161.2	2080.8
21	0.1055	1972.8	1935.2	2013.0	1980.9
22	0.1024	1846.9	1885.5	1936.4	1924.0
23	0.0993	1669.2	1837.2	1868.7	1875.1
24	0.0819	1610.2	1594.0	1534.8	1630.1
25	0.0655	1410.1	1407.5	1212.7	1363.4
26	0.0614	1331.3	1367.3	1132.6	1292.4
27	0.0512	1177.0	1278.3	939.3	1113.2
28	0.0522	1177.2	1286.4	958.5	1131.6
29	0.0696	1468.1	1450.2	1290.6	1430.1
30	0.0819	1685.4	1594.0	1532.6	1627.8
31	0.0983	1828.0	1821.9	1858.1	1870.4
32	0.1106	2133.6	2020.3	2121.7	2055.3
33	0.1126	2215.4	2054.8	2167.5	2086.9
34	0.1188	2421.2	2165.5	2306.6	2179.8
35	0.1280	2293.3	2340.8	2504.3	2303.6
36	0.1423	2615.2	2639.3	2831.4	2501.1

Tabela 4. Wyniki pomiarów i obliczeń hydrauliki dla słomy pszenicznej **Table 4.** Experimental and calculated results of hydraulics for wheaten straw

- Środkowo-Pomorskie Towarzystwo Naukowe Ochrony Środowiska

		ΔP_{zm}	ΔP_{I}	$\Delta P_{B_{0}}$	$\Delta P_{B_{\alpha}}$
Lp. No.	w [m/s]	$\overline{H\cdot\rho} [\mathrm{m/s^2}]$	$\overline{H\cdot\rho} [\mathrm{m/s^2}]$	$\frac{1}{H \cdot \rho} [\text{m/s}^2]$	$\frac{D_0}{H \cdot \rho} [\mathrm{m/s}^2]$
1	0.0891	230.1	300.4	300.0	323.8
2	0.0942	249.9	317.1	319.5	343.6
3	0.0860	229.9	290.8	288.5	312.2
4	0.0973	250.3	327.6	331.1	355.3
5	0.1075	308.4	365.0	369.1	393.1
6	0.1239	388.0	432.7	433.8	456.7
7	0.1208	369.5	419.2	423.8	447.2
8	0.1331	450.0	475.0	474.6	496.5
9	0.1321	449.9	470.2	470.6	492.7
10	0.1352	508.8	485.0	482.9	504.5
11	0.1495	530.5	557.7	541.8	560.5
12	0.1556	591.8	590.9	569.2	586.4
13	0.1556	571.6	590.9	568.5	585.7
14	0.1382	509.0	499.7	494.8	515.8
15	0.1300	488.8	460.4	462.3	484.7
16	0.1249	485.8	437.2	438.7	461.6
17	0.1198	485.4	414.9	419.0	442.4
18	0.1126	426.1	385.0	390.6	414.5
19	0.1106	405.4	377.1	381.3	405.2
20	0.0840	306.9	284.6	281.8	305.3
21	0.0973	346.2	327.6	330.7	354.9
22	0.0748	267.3	258.4	247.6	270.2
23	0.0543	229.0	211.3	177.3	196.5
24	0.0512	247.8	205.5	166.6	185.0
25	0.0717	267.6	250.4	237.4	259.6
26	0.0819	307.2	278.5	275.0	298.4
27	0.0881	307.4	297.1	297.1	321.0
28	0.1024	328.1	345.9	351.0	375.2
29	0.1075	394.1	365.0	371.8	396.0
30	0.1229	407.7	428.3	430.5	453.5
31	0.1147	446.2	393.6	399.4	423.3
32	0.1311	507.4	465.5	465.2	487.4
33	0.1403	509.2	510.1	503.2	523.8
34	0.1485	569.7	552.4	537.7	556.6

Tabela 5. Wyniki pomiarów i obliczeń hydrauliki dla zrębów drzewnych**Table 5.** Experimental and calculated results of hydraulics for tree chips

		ΔP_{zm}	ΔP_L	$\Delta P_{B_{0,ir}}$	ΔP_{B_0}
Lp. No.	w [m/s]	$\overline{H\cdot\rho}$ [m/s ²]	$\overline{H \cdot \rho} [\mathrm{m/s^2}]$	$\overline{H\cdot\rho}$ [m/s ²]	$\overline{H\cdot\rho}$ [m/s ²]
1	0.0563	1706.2	1742.9	1670.8	1598.5
2	0.0696	1821.9	2056.6	2050.5	1990.5
3	0.0727	1879.7	2138.4	2170.7	2114.4
4	0.0717	1918.7	2110.8	2141.7	2083.7
5	0.0768	2228.4	2253.1	2306.9	2257.2
6	0.0819	2402.0	2405.1	2467.3	2428.0
7	0.0911	2615.4	2703.7	2757.4	2741.6
8	0.0973	2870.3	2920.2	2958.5	2961.9
9	0.1004	3085.2	3035.6	3062.8	3077.2
10	0.1075	3617.9	3311.8	3307.0	3349.5
11	0.1126	3943.5	3521.9	3493.2	3558.7
12	0.1290	4491.3	4263.3	4082.1	4238.3
13	0.1485	5015.8	5275.9	4774.8	5072.5
14	0.1494	5058.9	5326.1	4810.3	5115.7
15	0.1280	4565.4	4215.2	4071.4	4222.3
16	0.1229	4104.9	3975.8	3889.9	4010.2
17	0.1147	3552.4	3611.2	3583.6	3659.7
18	0.1126	3305.0	3521.9	3492.1	3557.7
19	0.1004	2844.5	3035.6	3077.2	3091.7
20	0.0870	2486.7	2567.0	2639.1	2611.9
21	0.0758	2249.7	2224.0	2279.3	2227.7
22	0.0707	1976.4	2083.7	2111.8	2052.3
23	0.0614	1898.0	1855.7	1828.5	1759.1
24	0.0594	1839.8	1809.4	1764.6	1693.8
25	0.0717	2280.7	2110.8	2143.1	2085.1
26	0.0840	2747.1	2468.8	2533.2	2498.5
27	0.0963	3098.5	2883.3	2924.7	2924.8
28	0.1024	3201.3	3111.5	3127.0	3148.8
29	0.1126	3420.7	3521.9	3491.6	3557.1
30	0.1229	3810.7	3975.8	3888.1	4008.4

Tabela 6. Wyniki pomiarów i obliczeń hydrauliki dla ziemi kompostowej**Table 6.** Experimental and calculated results of hydraulics for vegetable soil

		ΛΡ	ΔP	$\Delta P_{\rm p}$	ΔP_{r}
Lp. No.	w [m/s]	$\frac{\Delta I_{zm}}{H \cdot \rho} \text{ [m/s^2]}$	$\frac{\Delta I_L}{H \cdot \rho} [\text{m/s}^2]$	$\frac{\Delta B_{0,ir}}{H \cdot \rho} [\mathrm{m/s}^2]$	$\frac{\Delta H_{B_0}}{H \cdot \rho} [\text{m/s}^2]$
1	0.0666	133.0	123.7	129.8	120.8
2	0.0696	133.7	128.9	137.2	128.3
3	0.0840	153.2	156.3	167.3	159.9
4	0.1178	210.7	241.1	239.0	240.9
5	0.1403	269.4	313.2	289.8	303.0
6	0.1321	288.8	285.5	271.9	280.5
7	0.1536	309.0	361.8	321.0	343.2
8	0.1085	248.9	214.9	218.7	217.2
9	0.1065	248.5	209.6	214.1	211.9
10	0.1126	229.7	226.2	227.6	227.5
11	0.1618	411.3	393.9	346.9	376.0
12	0.1597	411.5	385.5	342.3	369.7
13	0.1116	249.1	223.4	225.7	225.3
14	0.0993	190.8	191.2	198.4	194.2
15	0.0819	170.8	152.0	160.8	153.2
16	0.0778	151.6	143.9	152.1	144.0
17	0.0666	132.4	123.7	128.9	119.9
18	0.0614	113.3	115.6	118.4	109.4
19	0.0625	113.4	117.1	120.5	111.5
20	0.0819	132.8	152.0	160.7	153.1
21	0.0932	152.4	176.5	185.0	179.3
22	0.1096	172.1	217.9	220.8	219.7
23	0.1137	210.7	229.3	230.1	230.5
24	0.1126	210.7	226.2	227.8	227.7
25	0.1249	289.6	262.5	257.3	262.4
26	0.1362	310.2	299.1	284.0	294.9
27	0.1475	330.9	339.0	311.1	329.2
28	0.1546	370.8	365.6	328.5	351.8
29	0.1597	411.6	385.5	342.3	369.8

Tabela 7. Wyniki pomiarów i obliczeń hydrauliki dla wrzosu **Table 7.** Experimental and calculated results of hydraulics for heather

Tabela 8. Zestawienie współczynników kierunkowych zależności $\Delta B_0 = f(w)$ wg (43) dla poszczególnych złóż

	Wsp. kierunko	$B_{0 { m sr}} \cdot 10^9$	
Rodzaj złoża	Coeff. in the l		
Type of the bed	a [·] 10 ⁸	b · 10 ⁹	$[m^2]$
	[s [•] m]	[m ²]	
Torf kwaśny	-2.312	2.580	4,699
Acid peat			
Kora z drzew liściastych	-1.508	1.782	5.921
Bark from deciduous trees			
Złoże po produkcji pieczarek	-1.206	1.081	3.210
Material in mushroom production			
Słoma pszeniczna	0.765	-0.768	2.400
Wheaten straw			
Zręby drzewne	0.944	1.897	13.966
Tree chips			
Ziemia kompostowa	-0.174	0.168	1.526
Vegetable soil			
Wrzos	-3.902	4.402	23.801
Heather			

Table 8. Compilation of slope coefficients in the relationship $\Delta B_0 = f(w)$ according to (43) and for the beds tested

7. Analiza wyników badań i wnioski

Porównanie wartości $\frac{\Delta P_{zm}}{H \cdot \rho}$, $\frac{\Delta P_L}{H \cdot \rho}$, $\frac{\Delta P_{B_{0ur}}}{H \cdot \rho}$ i $\frac{\Delta P_{B_0}}{H \cdot \rho}$ dla poszczegól-

nych złóż znajduje się na rys. 2÷8, przy czym punkty na wykresach 2÷8 dotyczą wielkości opartych o pomiar ΔP_{zm} .

Jak widać z tych wykresów, zgodność ΔP_{zm} , ΔP_L i ΔP_{B_0} jest bardzo dobra, odchyłki ΔP_{zm} mieszczą się w granicach błędów fizycznych pomiarów. Natomiast w przypadku $\Delta P_{B_{0dr}}$, zwłaszcza na dolnym i górnym skraju przedziału

zmienności w użytego w badaniach, błąd funkcji $\frac{\Delta P_{B_0}}{H \cdot \rho}$ staje się już istotny.

Oznacza to, że stosowanie poprawki ΔB_0 jest niezbędne, choć jak wspomniano wcześniej, nie znaleziono przekonującego argumentu fizykalnego, że w trakcie zmiany prędkości przepływu gazu przez złoże może zmieniać się jego przepuszczalność.

Wyznaczenie dla badanych złóż $B_{0 \, sr}$ upoważnia również do oszacowania liczbowej wartości średnicy ekwiwalentnej d_e . Otóż zgodnie z [23]

$$d_e = \sqrt{\frac{16 \cdot B_0 \cdot k \cdot (1 - \varepsilon)^2}{\varepsilon^3}}$$
(44)

Stała k zależy głównie od struktury złoża i porowatości. Przyjmując zgodnie z tabl. 2 [11] $k = 4.7 \div 12.3$ można oszacować d_e dla poszczególnych złóż.

Dla torfu, który składa się głównie z dość regularnych cząstek, można założyć k = 4.7. Wówczas $d_e = 0.9684 \cdot 10^{-3}$ m. Dla podłoża po produkcji pieczarek, które tworzy w przybliżeniu strukturę włóknistą, $k \approx 12.0$ i $d_e = 0.2882 \cdot 10^{-3}$ m. Odpowiadające tym d_e liczby Re_p dla prędkości w = 0.10 m/s wynoszą odpowiednio: dla torfu

$$\operatorname{Re}_{p} = \frac{w \cdot \rho \cdot d_{e}}{(1 - \varepsilon) \cdot n} = \frac{0.10 \cdot 1.155 \cdot 0.0009684}{(1 - 0.4719) \cdot 0.0000312} = 6.8$$

dla podłoża pieczarkowego

$$Re_p = \frac{0.10 \cdot 1.155 \cdot 0.0002882}{(1 - 0.7578) \cdot 0.0000312} = 4.4$$

Zmiana reżimu przepływu z laminarnego na przejściowy zachodzi przy $Re_p \approx 1$. Wynika stąd, że dla niższych *w* należy oczekiwać przepływu laminarnego, co znajduje potwierdzenie w obliczeniach B_0 i $\frac{\Delta P}{H \cdot \rho}$, kiedy to człon la-

minarny ma dominujące znaczenie. Tym bardziej ciekawe staje się spostrzeżenie, że bardzo dobrą zgodność danych doświadczalnych i obliczonych uzyskuje się przy użyciu wzoru Leva'y, który dobrze oddaje rzeczywiste opory przepływu dla *w*>0.05 m/s. Rozstrzygnięcie wątpliwości o dominującej roli członu laminarnego lub burzliwego mogą dać jedynie dalsze badania prowadzone dla znacznie szerszego zakresu zmienności *w*, niż przedstawione w niniejszej pracy.

Interesujące jest też porównanie przebadanych złóż biologicznie czynnych ze względu na opory przepływu. Zamieszczono je na rys. 9. Jak z niego wynika, poszczególne złoża mają różne charakterystyki hydrauliczne, największe relatywnie opory ma nawilżona ziemia kompostowa, najmniejsze, zgodnie z oczekiwaniem, wrzos i zręby drzewne. Należy tu jednak wyraźnie zaznaczyć, że charakterystyki te obowiązują dla użytego w badaniach sposobu preparowania tych złóż, a więc wstępnego nawilżenia i stopnia ubicia. Niemniej, dane te pozwalają przewidzieć, jakich należy spodziewać się oporów przepływu w biologicznej kolumnie dezodoryzacyjnej.

Rys. 2. Zależność $\Delta P/(H \cdot \rho) = f(w^2)$ dla torfu kwaśnego **Fig. 2.** Plot of $\Delta P/(H \cdot \rho) = f(w^2)$ for acid peat

Rys. 3. Zależność $\Delta P/(H^{\cdot}\rho) = f(w^2)$ dla kory z drzew liściastych **Fig. 3.** Plot of $\Delta P/(H^{\cdot}\rho) = f(w^2)$ for bark from deciduous trees

Rys. 4. Zależność $\Delta P/(H^{\cdot}\rho) = f(w^2)$ dla złoża po produkcji pieczarek **Fig. 4.** Plot of $\Delta P/(H^{\cdot}\rho) = f(w^2)$ for processed material in mushroom production

Rys. 5. Zależność $\Delta P/(H^{\cdot}\rho) = f(w^2)$ dla słomy pszenicznej **Fig. 5.** Plot of $\Delta P/(H^{\cdot}\rho) = f(w^2)$ for wheaten straw

Rys. 6. Zależność $\Delta P/(H \cdot \rho) = f(w^2)$ dla zrębów drzewnych **Fig. 6.** Plot of $\Delta P/(H \cdot \rho) = f(w^2)$ for tree chips

Rys. 7. Zależność $\Delta P/(H \cdot \rho) = f(w^2)$ dla ziemi kompostowej **Fig. 7.** Plot of $\Delta P/(H \cdot \rho) = f(w^2)$ for vegetable soil

Rys. 8. Zależność $\Delta P/(H^{\cdot}\rho) = f(w^2)$ dla wrzosu **Fig. 8.** Plot of $\Delta P/(H^{\cdot}\rho) = f(w^2)$ for heather

Generalnie można stwierdzić, że dla przebadanych 7 złóż w zakresie $w = 0.052 \div 0.18$ m/s użycie prostej formuły Leva'y pozwala obliczyć z dobrą dokładnością opory przepływu przez te złoża. Posłużenie się przepuszczalnością niepomiernie komplikuje takie obliczenia, a przede wszystkim wymaga znajomości poprawki ΔB_0 .

W celach praktycznych można zatem wykorzystać określone w niniejszej pracy stałe α i β w poprawionym wzorze Leva'y dla poszczególnych złóż, zestawione w tablicy 9, przy czym wzór ten ma postać:

$$\frac{\Delta P_L}{H \cdot \rho} = \alpha \cdot w^2 + \beta \tag{45}$$

Na podstawie wyników badań oraz ich dyskusji można sformułować następujące wnioski:

- 1. Do opisu spadku ciśnienia w funkcji prędkości gazu (liczonej na pusty przekrój kolumny) bardzo dobrze nadaje się wzór Leva'y, bazujący na eksperymentalnie wyznaczonych stałych α i β zestawionych dla 7 przebadanych złóż w tabeli 9 i obowiązujący w zakresie $w = 0.052 \div 0.18$ m/s.
- 2. Istnieją przesłanki, że zależności te można ekstrapolować w kierunku wyższych prędkości gazu.
- 3. Użycie w opisie hydrauliki złóż pojęcia przepuszczalności pozwala również z dobrą zgodnością z wynikami doświadczalnymi wyliczyć ΔP pod warunkiem, że uwzględni się poprawkę ΔB_0 opisaną wzorem (43). Wprowadzenie takiej poprawki nie ma jednak uzasadnienia fizykalnego.
- 4. Zależność Erguna, bazująca na wprowadzonej przez Carmana przepuszczalności $B_{0\,\text{sr}}$ (wraz z poprawką ΔB_0) jest w stosunku do wzoru Leva'y znacznie bardziej złożona, a zwiększenia precyzji opisu niewielkie.
- 5. Wyliczone z $B_{0 \,\text{śr}}$ średnice ekwiwalentne d_e są stosunkowo niskie (rzędu $10^3 \div 10^{-4}$ m) i mają znaczenie czysto umowne. Wyliczone na bazie d_e wartości Re_p wskazują, że dla przebadanych złóż występował przepływ przejściowy.
- 6. Eksperymentalne współczynniki α i β we wzorze Leva'y pozwalają przewidzieć opory przepływu przez złoże z torfu kwaśnego, rozdrobnionej kory z drzew liściastych, słomy, przepracowanego złoża po produkcji pieczarek, zrębów drzewnych, ziemi kompostowej i wrzosu w zakresie prędkości w =0.052÷0.18 m/s, a więc dobrać urządzenie przetłaczają-ce w tym zakresie w.

Tabela 9. Zestawienie wartości stałych α i β w poprawionym wzorze Leva'y, (45) współczynników regresji oraz porowatości **e** dla poszczególnych złóż.

Rodzaj złoża	$\alpha \cdot 10^{-4}$	$\beta \cdot 10^{-2}$	R	3
Type of the bed	[1/m]	$[m/s^2]$	[%]	$[m^{3}/m^{3}]$
Torf kwaśny	8.270	1.864	98.69	0.4719
Acid peat				
Kora z drzew liściastych	4.764	2.990	93.08	0.6562
Bark from deciduous trees				
Złoże po produkcji pieczarek	10.878	3.572	96.24	0.7578
Material in mushroom production				
Słoma pszeniczna	7.721	10.759	95.32	0.9306
Wheaten straw				
Zręby drzewne	1.785	1.587	87.93	0.6822
Tree chips				
Ziemia kompostowa	18.713	11.494	96.19	0.6287
Vegetable soil				
Wrzos	1.242	0.687	93.49	0.9336
Heather				

Table 9. Compilation of constants a and b in the improved Leva's equation (45), regression coefficients and porosity e for the beds tested.

- 7. Autorzy pracy sądzą, że badania prowadzone w szerszym zakresie w, niż przedstawione w artykule, pozwoliłyby wyjaśnić wątpliwości związane ze zmienną przepuszczalnością złóż, niezbędną (poprzez poprawkę ΔB_0) w uzgodnieniu danych pomiarowych z obliczonymi.
- 8. Porównanie wyników badań autorów z danymi pracy [24] wskazuje, że we własnych zależnościach ujęto opory przepływu w zakresie przejściowym, zaś w [24] zakres laminarny przepływu. Wskazują na to przebiegi charakterystyk $\Delta P = f(w)$ prostoliniowe w układzie $\Delta P = f(w)$ w [24] i prostoliniowe w <u>charakterystyk</u> $\Delta P = f(w)$ w badaniach własnych.

Rys. 9. Zależność $\Delta P_{zm}/(H^{\cdot}\rho) = f(w^2)$ dla poszczególnych złóż **Fig. 9.** Plot of $\Delta P_{zm}/(H^{\cdot}\rho) = f(w^2)$ for the beds tested

Literatura

- 1. **Syrek B.:** Biologiczne oczyszczanie gazów z wykorzystaniem materiałów pochodzenia organicznego, Ochr. Pow. i Probl. Odp., <u>4</u>, (1995)
- Szklarczyk M.: Biologiczne oczyszczanie gazów odlotowych, Wyd. Pol. Wrocł., Wrocław 1991

Środkowo-Pomorskie Towarzystwo Naukowe Ochrony Środowiska

- Maćkowiak J.: Biologiczna metoda usuwania formaldehydu z gazów odlotowych w biofiltrze, Przemysł Drzewny, <u>8</u>, (1991)
- 4. **Szklarczyk M.:** Rozkład formaldehydu przez materiały aktywne biologicznie, Ochr. Pow. i Probl. Odp., <u>3</u>, (1992)
- Szklarczyk M., Rutkowski J.D.: Metody dezodoryzacji gazów odlotowych z zakładów przetwórstwa odpadów zwierzęcych, Mat. Konf. "Odours Control Measurement Regulations", Świnoujście 1993
- Kozłowska B.: Integrated air quality control for industrial and commercial sectors, 5th International Symposium, Międzyzdroje, Mat. Symp., 319 (1997)
- Mokrosz W.: Badania procesu absorpcji SO₂ w absorberach alkalicznych z wykorzystaniem współprądowego aparatu z wypełnieniem komórkowym, Praca doktorska, Pol. Śl., Gliwice 1996 (praca niepublikowana)
- 8. Hobler T.: Dyfuzyjny ruch masy i absorbery, WNT, Warszawa 1978
- 9. Ergun S.: Chem. Eng. Progr., <u>48</u>, 89 (1952)
- 10. Carman P.C.: Flow of gases trough porous media, Butterworths Sc. Public., London 1956
- 11. Palica M.: Inż. Chem., <u>4</u>, 757 (1973)
- 12. Brown G.G. i wsp.: Operacje jednostkowe, tłum. z jęz. ang., WNT, Warszawa 1960
- 13. **Brauer H.:** Grundlagen der Einphasen und Mehrphasen Strömungen, Verlag Säuerländer, Frankfurt am Main, 1971
- 14. Żaworonkow M.N.: Gidrawliczeskije osnowy skrubbernogo processa i tiepłopieredacza w skrubberach, Izd. Sow. Nauka, Moskwa 1944
- 15. **Kasatkin A.G.:** Osnownyje processy i apparaty chimiczeskoj technołogii (Izd.4), G.N.T.I.Ch., Moskwa 1948
- 16. Ramm W.M.: Absorbcija gazow, Izd. Chimija, Moskwa 1966
- 17. Serwiński M.: Elementy inżynierii chemicznej, PWN, Warszawa 1962
- Brötz W.: Podstawy inżynierii reakcji chemicznych, tłum. z jęz. niem., WNT, Warszawa 1964
- 19. Chilton T.H., Colburn A.P.: Trans. Am. Inst. Chem. Engrs., <u>16</u>, 178 (1931)
- 20. Piecuch T.: Zesz. Nauk. Wydz. Budow. i Inż. Środ., Seria Inż. Środ., <u>14</u>, 87 (1999)
- Palica M., Tatoj P., Waluś J., Wilczek A.: Badania oporów przepływu i skuteczności dezodoryzacji trójetyloaminy na wybranych złożach naturalnych, Cz. I: Wprowadzenie i instalacja doświadczalna, Ochr. Pow. i Probl. Odp., <u>5</u>, 173 (1997)
- 22. Strumiłło Cz.: Podstawy teorii i techniki suszenia, WNT, Warszawa 1974
- 23. Hobler T.: Ruch ciepła i wymienniki, WNT, Warszawa 1968
- 24. **Kawik M.:** Badania hydrauliki wybranych złóż biologicznych, Praca dypl. mag. pod kierunkiem M. Palicy, OBR "BAROWENT", Katowice 1998 (praca do użytku wewnętrznego)
- 25. Kawalec-Pietrenko B., Świsłowski M., Chachulski B.: Inż. i Ap. Chem., <u>6</u>, 8 (1998)

Hydraulics of selected biologically active beds

Abstract

The own experimental results dealing with pressure drop have been discussed for the following beds of biological origin: acid peat, crumbled bark from deciduous trees, processed material in mushroom production, wheaten straw, tree chips, vegetable soil and heather. The biofilter bed formed the the main part in of the experimental set up. The air with stabilised temperature $(30^{\circ}C)$ and relative humidity (φ =70%) flowed through the bed. A range of the linear superficial air velocity was equal to $w=0.051\div0.102$ m/s, and corresponded to the velocities most frequently used in industrial devices. A simple approach of Leva as well as the one of Ergun and Carman in which a concept of permeability was introduced, have been employed in elaboration of experimental data. The both methods enabled one to avoid determination of the equivalent diameter $d_{\rm e}$ - essential while using the overall relationship and the Leva's. avoronkov's, Brown'a et al., Brauer's, Kasatkin's, Ramm's, Serwiñski's, Brötz's and Chilton and Colburn's equations. On the basis of the own experimental data, values of α and β from the given below Leva's equation (see Tab.9) have been calculated

$$\frac{\Delta P}{H\rho} = \alpha w_0^2 + \beta$$

A very good agreement between the experimental and calculated data has been confirmed.

In the case when a concept of permeability B_0 was used, a little variation of the following function was discovered

$$B_o = f(w)$$

This variation bas been treated using the equation

$$B_o = B_{osr} + aw + b$$

Values of $B_{o sr}$, *a* and *b* are gathered in a Tab.8, while pressure drop can be calculated as

$$\frac{\Delta P}{H\rho} = \frac{\eta w}{\rho B_o} + \frac{1.75w^2}{\sqrt{150\varepsilon^3 B_o}}$$

Compatibility between the experimental and calculated data while using the Leva's, Ergun's and Carman's equations (with B_0 and $B_{0 sr}$) are shown in Figs. 2÷8. A compilation of $\frac{\Delta P_{zm}}{H\rho} = f(w^2)$ for the beds tested is presented in Eig 0.

Fig.9.

Środkowo-Pomorskie Towarzystwo Naukowe Ochrony Środowiska -

Michał Palica, Klaudia Chmiel, Jerzy Waluś

It has been stated that the hydraulic characteristics for acid peat, crumbled bark from deciduous trees, processed material in mushroom production, wheaten straw and vegetable soil were very similar. On the other hand, tree chips manifested a slightly higher whereas the bed made of heather the lowest pressure drop.

The relationships given enable one to predict the elementary pressure drop across beds for established velocity taken from the range $w=0.051\div0.102$ m/s, and therefore to select appropriate compression of the air feeding device.

SPIS SYMBOLI I OZNACZEŃ LIST OF SYMBOLS

- przepuszczalność w zależności Carmana (17), m² Bo - permeability in the Carman's relationship (17), m² Bo - poprawka przy obliczaniu przepuszczalności, m² ΔB_0 - correction factor in the calculation of permeability. m^2 ΔB_{o} - stała w ogólnym równaniu (1) na spadek ciśnienia na złożu С С - constant in the overall equation (1) for pressure drop across the bed - przekrój kolumny, m² F - area of the column cross-section, m² F Η - wysokość złoża, m Η - bed height, m М - masa molowa, kg/kmol Μ - molar mass, kg/kmol Ρ - ciśnienie. Pa Ρ - pressure, Pa ΛP - spadek ciśnienia na złożu, Pa ΔP - pressure drop across the bed, Pa S_0 - indywidualna stała dla każdego wypełnienia, 1/m - specific constant for beds, 1/m S Т - temperatura, K Т - temperature, K V_{en}/V_e - udział objętościowy poszczególnych frakcji V_{en}/V_{e} - volume fraction Y - stosunek masowy pary wodnej w powietrzu, kg H₂O/kg pow. suchego - mass ratio of vapour in air, kg H₂O/kg dry air Y - wielkość pomocnicza, m Y Y - auxiliary factor, m - jednostkowa powierzchnia wypełnienia, m^2/m^3 а - specific surface of the packing, m^2/m^3 а ·Środkowo-Pomorskie Towarzystwo Naukowe Ochrony Środowiska 118 -

- współczynnik w korelacji liniowej $\Delta B_0 = f(w)$, s m а - coefficient in the linear correlation $\Delta B_0 = f(w)$, m's а - współczynnik w korelacji liniowej $\Delta B_0 = f(w), m^2$ b - coefficient in the linear correlation $\Delta B_0 = f(w)$, m² h - średnica czastki złoża, m d - diameter of the particle in beds, m d - współczynnik oporu w równaniu Żaworonkowa (5) f f - drag coefficient in the Żavoronkov's equation (5) f_p - współczynnik oporu w ujeciu oporów przepływu Erguna - drag coefficient according to the Ergun's approach fp - gestość zraszania, $kg/(m^2 \cdot s)$ \mathbf{g}_0 - wetting density, $kg/(m^2 s)$ go - indywidualna stała dla każdego wypełnienia k - specific constant of beds k - ciśnienie cząstkowe, Pa р - partial pressure, Pa р - temperatura powietrza, °C t - air temperature, °C t - udział masowy cząstek w frakcji, kg/kg u - mass concentration of particles in the fraction, kg/kg u - prędkość gazu, liczona na pusty przekrój kolumny, m/s W - superficial gas velocity, m/s W - współczynnik we wzorze Leva'y (10), 1/m α - coefficient in the Leva's equation (10), 1/m а - współczynnik we wzorze Leva'y (31), 1/m α - coefficient in the Leva's equation (31), 1/m а - stała w poprawionym wzorze Leva'y (45), 1/m α - coefficient in the corrected Leva's equation (45), 1/m а - stała w poprawionym wzorze Leva'v (45), m/s^2 β - coefficient in the corrected Leva's equation (45), m/s^2 ß - porowatość złoża, m^3/m^3 ε - porosity of the bed, m^3/m^3 е - współczynnik lepkości dynamicznej gazu, Pa s η - dynamic viscosity of gas, Pa's h - udział objętościowy pary w powietrzu wilgotnym $\phi_{H,O}$ - volume fraction of vapour in wet air $\phi_{\rm H,O}$ - udział objętościowy powietrza w powietrzu wilgotnym ϕ_{pow} - volume fraction of air in wet air ϕ_{pow}

- ϕ wilgotność powietrza, %
- φ air humidity, %
- ϕ_{ϵ} współczynnik w zależności Brauera (22)
- ϕ_e coefficient in the Brauer's equation (22)
- ρ gęstość gazu, kg/m³
- r gas density, kg/m^3
- ψ współczynnik oporów przepływu wg Brauera
- ψ drag coefficient according to Brauer

INDEKSY INDEXES

- $B_{0\,\acute{s}r}$ - dotyczy wartości obliczonych na bazie $B_{0\,\acute{s}r}$
- $B_{\rm o\,\,\acute{s}r}$ $\,$ refers to values calculated on the basis of $B_{\rm o\,\,\acute{s}r}$
- B₀ dotyczy wartości opartych o skorygowaną wartość przepuszczalności
- B_o refers to values based on corrected permeability
- H₂O dotyczy wody
- H₂O refers to water
- L dotyczy ujęcia Leva'y
- L refers to the Leva's approach
- Ż odnosi się do Żaworonkowa
- Ż refers to the Żavoronkov's approach
- b oznacza barometryczne
- b refers to barometric
- e dotyczy wartości ekwiwalentnej
- e refers to the equivalent value
- i dotyczy kolejnej frakcji
- i refers to the subsequent fraction
- kr dotyczy stanu krytycznego
- kr refers to the critical state
- n dotyczy kolejnej frakcji
- n refers to the subsequent fraction
- pow dotyczy powietrza
- pow refers to air
- s dotyczy stanu nasycenia
- s refers to sturation
- st oznacza statyczne
- st refers to static
- śr dotyczy wartości średniej
- śr refers to the average value

120

Środkowo-Pomorskie Towarzystwo Naukowe Ochrony Środowiska

- zm dotyczy wartości zmierzonej
- zm refers to the measurement value

MODUŁY PODOBIEŃSTWA SIMILARITY MODULES

Eu - liczba Eulera, $Eu = \frac{\Delta P}{\rho \cdot w^2}$

Eu - Euler number,
$$Eu = \frac{\Delta P}{\rho w^2}$$

Re - liczba Reynoldsa, Re =
$$\frac{\rho \cdot w \cdot d_e}{\eta}$$

- Re Reynolds number, $\text{Re} = \frac{\rho w d_e}{\eta}$
- $\begin{array}{l} \operatorname{Re}_{\dot{Z}} & -\operatorname{liczba} \operatorname{Reynoldsa} \ w \ ujęciu \ oporów \ przepływu \ \dot{Z}aworonkowa, \\ \operatorname{Re}_{\dot{L}} = \frac{w \cdot \rho \cdot d_e}{\varepsilon \cdot \eta} \end{array}$
- Re_Z Reynolds number according to Żavoronkov, $\text{Re}_{Z} = \frac{w\rho d_{e}}{\epsilon \eta}$
- Rep liczba Reynoldsa w ujęciu oporów przepływu Erguna,
- $\operatorname{Re}_{p} = \frac{w \cdot \rho \cdot d_{e}}{(1 \varepsilon) \cdot \eta}$
- Re_p Reynolds number according to Ergun, $\operatorname{Re}_{Z} = \frac{w\rho d_{e}}{(1-\varepsilon)\eta}$