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Abstract: This study focuses on the energy dissipation characteristics of High-Performance Concrete (HPC) under 
uniaxial repeated compressive loading for three different grades. The objective is to analyze the energy dissipation 
capacity of HPC by examining the stress-strain hysteresis during repeated loading. The dimensionless energy 
dissipation ratio, Rn, quantifies the energy dissipated per loading-unloading cycle, depicting the proportion of dissipated 
energy relative to the total stored strain energy in each cycle. The present work includes the relationship between Rn 
and the normalized envelope strain at the peak of each cycle, as well as the normalized plastic strain at unloading. The 
results highlight the behavior of the Rn ratio. The findings indicate that all three grades of HPC investigated exhibit 
similar energy dissipation patterns. The plotted data reveal a bilinear behavior, characterized by an initial high rate of 
increase in Rn followed by a relatively slower rate of increase. Additionally, simple empirical relationships based on 
the observed data are also proposed. The results of this study can aid in determining elastic limits and damage indicators 
for HPC under repeated loading, enabling engineers to predict material behavior and optimize the design and 
maintenance of HPC structures in seismic and cyclic loading conditions. The results can be used for designing HPC 
structures capable of withstanding seismic and repeated loading conditions, enhancing their resilience and safety. 
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Notation used 

σ = Normalised stress-ratio, f/fm 
f = Stress 
e = Strain 
a0, a1, b1, a2, b2, 1, 1, w = Equation constants 
eE = Normalized envelope strain 
er = Plastic strain ratio 
em = Strain corresponding to peak stress 
fm = failure (peak) stress 
In  = Natural logarithm 
Rn  = Energy dissipation ratio 

1. Introduction 

High-performance concrete (HPC) is a material widely acknowledged for its exceptional mechanical prop-
erties, including high compressive strength and enhanced durability (Aïtcin 1998). However, a common per-
ception exists that materials with higher strength tend to exhibit reduced toughness compared to those with 
lower strength (Momin et al. 2022, C. Xie et al. 2021). Sufficient ductility in structural elements is crucial in 
regions prone to seismic activity, as it holds equal significance to enhancing compressive strength in construct-
ing earthquake-resistant structures (Fitwi 2023). During severe seismic events, structures experience only 
a limited number of load reversals that push them into the inelastic range (Civjan & Singh 2003, Fajfar et al. 
1992). The ability to dissipate energy during inelastic deformation becomes a critical factor in assessing the 
performance of reinforced concrete structures or structural components exposed to intense seismic actions. 
The energy-dissipation capacity has gained significant importance as a crucial metric to assess a member's 
ability to resist repeated inelastic loadings or serve as an indicator of damage (Ellingwood 2001, Ghobarah 
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et al. 1999, Haryanto et al. 2022, Hwang & Scribner 1984, Tafsirojjaman et al. 2019). For example, in the case 
of brick masonry piers subjected to lateral in-plane repeated loadings, researchers have expressed the energy 
dissipated per cycle of loading as a dimensionless energy dissipation ratio (Magenes & Calvi 1997, Malomo 
& DeJong 2021, Malomo et al. 2019). This ratio measures the dissipated energy in relation to the total stored 
strain energy per cycle. The concept of energy-dissipation capacity has also found extensive application in the 
evaluation of reinforced concrete members (Dabbaghi et al. 2022, Park & Eom 2004, Wang et al. 2020, 
Wu et al. 2021). Researchers have utilized indices such as the energy dissipation index (Ingham et al. 2002, 
Nmai & Darwin 1984), that normalizes the total dissipated energy concerning the energy stored at yield point, 
to characterize the cyclic performance of reinforced concrete beam. Lower energy dissipation is indicative of 
brittle behavior, while high-energy dissipation signifies ductile behavior. 

The emergence of HPC has marked a significant breakthrough in the realm of cementitious materials over 
the past three decades (Xu et al. 2023). The use of higher pozzolanic materials in HPC has improved rheolog-
ical behavior, characterized by enhanced flow and deformation characteristics under various loading condi-
tions, particularly with the incorporation of materials such as ultrafine slag powder, limestone, nano clay, etc. 
(Arunothayan et al. 2023, Luan et al. 2023). Recent research underscores the immense potential of HPC in var-
ious engineering applications, including bridges (Saidin et al. 2023), wind tower constructions (Harte & Van 
Zijl 2007), and infrastructure repair (Wang et al. 2024). Structures in these applications are subjected to cyclic 
loadings throughout their operational lifespan, enduring millions of cycles before exhibiting signs of failure or 
necessitating maintenance. Cyclic loading, induced by factors such as traffic, wind, wave action, and machine 
vibrations (Lee & Barr 2004), contributes to the initiation and development of microcracks within the concrete 
matrix, leading to a gradual loss of mechanical performance (Larosche 2009). In HPC fatigue, a process char-
acterized by mechanical weakening until eventual failure (Becks & Classen 2021, Mínguez et al. 2019, Schäfer 
et al. 2019, Smarzewski 2018, Sun et al. 2018, Zhang & Zhou 2022), the cyclic and repetitive loads play 
a pivotal role in developing microcracks within the concrete matrix, resulting in the dissipation of energy and 
the loss of mechanical performance (Klingbeil 2003). This intricate interplay between the exceptional proper-
ties of HPC and the challenges posed by cyclic loading forms the basis for the present work, i.e., energy dissi-
pation characteristics of HPC under various cyclic loadings. Understanding how HPC dissipates energy in 
response to cyclic loading is crucial for optimizing its performance in structures subjected to repetitive stress, 
ultimately contributes to the advancement of resilient and durable infrastructure. Despite considerable research 
on energy dissipation characteristics in conventional concrete under repeated loading, studies focusing on 
High-Performance Concrete (HPC) remain scarce, particularly regarding its response to uniaxial repeated com-
pressive loading. While previous research has examined the energy dissipation capacity of concrete subjected 
to cyclic loading (Rajput & Iqbal 2017b), the unique mechanical properties of HPC, such as its enhanced 
strength and durability, necessitate a focused investigation of its performance under repeated loading condi-
tions. Some studies have studied energy dissipation in HPC for seismic applications and dynamic loading 
conditions (Rajput & Iqbal 2017a, Rajput et al. 2018), but there remains a gap in understanding how HPC, 
particularly of different grades, behaves under uniaxial repeated compressive loading. 

The present work aims to study the effect of repeated compressive loading on the strength and energy 
dissipation characteristics of high-performance concrete. Three different grades of HPC, denoted as M1, M2, 
and M3, with respective 28-day cube compressive strength of 65, 85, and 102 MPa, were chosen as the subjects 
of this investigation. The energy dissipation capacity of HPC under uniaxial compressive loading can be ex-
amined by examining the stress-strain hysteresis during repeated loading. This study aims to investigate the 
relationship between the dimensionless energy-dissipation ratio, Rn, and normalized envelope-strain at peak 
of loading cycles and the normalized plastic strains at un-loading. Additionally, empirical relationships are 
proposed based on the observed data to provide further understandings into energy dissipation behavior of 
HPC under repeated loading. 

While significant research has been conducted on the energy dissipation characteristics of conventional 
concrete under repeated loading, studies on HPC remain limited, particularly regarding its response to uniaxial 
repeated compressive loading. The purpose of this investigation is to improve our understanding of energy-
dissipation characteristics of HPC under cyclic compressive loadings and to formulate simple empirical rela-
tions to simulate the behavior. This study addresses this gap by examining the bilinear relationship between 
the energy-dissipation ratio (Rn) and strain parameters, proposing empirical relationships that can identify crit-
ical points such as elastic limits and damage initiation for different grades of HPC. The empirical relations 
proposed would help in comparing the performance of different grades of HPC under repeated compressive 
loading. 
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The structure of this paper is organized as follows: Section 2 provides a detailed description of the experi-
mental methodology, including the materials used, mix designs, and testing procedures for assessing the energy 
dissipation characteristics of high-performance concrete (HPC) under uniaxial repeated compressive loading. 
Section 3 presents the results and discussion, where the stress-strain hysteresis behavior and energy dissipation 
ratios (Rn) for the three grades of concrete (M1, M2, and M3) are analyzed and compared. The empirical rela-
tionships derived from the experimental data are also discussed in this section. Finally, Section 4 concludes 
the paper by summarizing the key findings. 

2. Experimental Investigation 

High-performance concrete (HPC) is produced by a precise selection of its constituent materials. In this 
study, commercially available ordinary Portland cement of 53-grade, adhering to IS: 12269 (IS 12269 2003), 
served as the foundation for the investigation. To achieve the desired concrete strengths, crushed basalt stone 
aggregates (CA) were employed, with a maximum size of 20 mm for producing M1 mix and 12 mm down for 
M2 and M3 mixes, respectively. The locally sourced sand, meeting the grading zone-II specifications outlined 
in IS 383-2016 (No 1992), was used in the concrete mix as fine aggregate (FA). The concrete mix design for 
3 mixes was developed following the methodology proposed by(Aïtcin 1998, Caldarone 2008), with specific 
details given in Table 1. 

The specimens used in this research are cylindrical, with a diameter of 150 mm and a height of 400 mm, 
featuring flared ends. These cylindrical specimens featured flared ends, which ensured uniform loading and 
reduced the likelihood of localized stress concentrations. The materials utilized in the mixes included fly ash, 
silica fume (SF), and a water-binder (W/B) ratio of 0.3. Additionally, a superplasticizer was incorporated into 
the mix to improve the workability and flowability. Table 2 shows the properties of M1, M2, and M3 mixes. 
 
Table 1. Mix design details 

Designation M1 M2 M3 

W/B ratio 0.34 0.28 0.25 

Cement, kg/m3 376 420 480 

FA, kg/m3 702 660 672 

CA, kg/m3 1125 1125 1125 

Fly ash, kg/m3 90 70 60 

SF, kg/m3 – 40 50 

Superplasticizer – Glenium B233 in % 0.38 0.5 0.7 

 
Table 2. Properties of HPC 

Grade 
Compressive Strength 

(MPa) 
Axial Deformation 

(mm) 
Poisson's Ratio 

Modulus of Elasticity 
(MPa) 

M1 65 0.0025 0.168 45813 

M2 85 0.0032 0.153 48559 

M3 102 0.0038 0.131 48973 

 
Specimens were instrumented to measure the axial displacements at two locations diagonally opposite 

to each other. Linear variable displacement transducers (LVDTs) were used to sensor the displacements along 
a fixed gauge length of 200 mm. Curved brackets were fixed to the surface of specimens using epoxy. LVDTs 
had a total stroke length of 2.5 mm and an output of 10 volts at the full displacement. The specimens were 
subjected to repeated compressive loading through a carefully controlled and systematic process. A servo-
hydraulic testing machine was employed to apply the compressive loads. The servo-hydraulic testing machine 
used for testing the specimens had a capacity of 3000 kN and a loading rate of 10 N/Sec. To avoid the frictional 
resistance between the specimens and platens, two Teflon sheets were placed at the top and bottom. The spec-
imens were securely positioned within the loading frame, and a uniaxial compressive load was then steadily 
and repeatedly applied. The loading process involved a cyclic pattern, wherein the specimens experienced 
a sequence of compressive loading and unloading cycles. Each loading cycle was meticulously controlled, 
ensuring uniformity and reproducibility. The loading mechanism simulated realistic conditions, mimicking the 
cyclic loading scenarios that structural elements often encounter during seismic events or other dynamic forces. 
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This rigorous loading approach allowed for a comprehensive examination of the energy-dissipation character-
istics of the HPC under consideration. The detailed loading protocol adhered to the standards and guidelines 
commonly accepted in structural testing, providing a reliable and controlled environment for assessing the 
specimens' response to cyclic compressive loadings. 

In every loading cycle as depicted in Figure 1, the peak strain approximately coincided with the envelope 
curves. The envelope curves represent the limit of stress values in the stress-strain domain that any loading 
curve cannot exceed without causing apparent failure in the concrete (Karsan 1968). All stress-strain curves 
remained within this envelope curve, irrespective of the load pattern. The load histories in the ascending zone 
of the stress-strain curves were regulated by continuously observing the incremental strain during each cycle. 
The load was released when the loading curves tended to descend in the descending zone of stress-strain 
curves. 

 

 

Fig. 1. Typical repeated loading test 
 
The envelope stress-strain curve for the three grades of HPC was constructed by plotting the peak stress-

strain values observed in every cycle under compressive loadings. To ensure consistency, both stress and strain 
were expressed in non-dimensional form. The stress coordinates were normalized relative to the failure (peak) 
stress, fm, exhibited by the specimens. Similarly, the strain coordinates were normalized relative to em, which 
represents the axial strain at the point of reaching the peak stress. Figure 2 to Figure 4 presents the envelope 
stress-strain curves for the M1, M2 and M3 grade of HPC respectively. These plots provide a comprehensive 
representation of the stress-strain behavior and highlight the overall trends observed in the three different 
grades of HPC. 

Using MATLAB, an expression (Eqn. 1) was derived for the three curves corresponding to mixes M1, M2, 
and M3 based on the test result data obtained during cyclic loading. The stress coordinates (σ) were normalized 
relative to the peak stresses (fm) observed in all specimens. Simultaneously, the strain coordinates (ε) were 
normalized concerning the axial strains (em) corresponding to points of peak stress attainment. This normali-
zation process facilitates a comparative analysis of the stress-strain behavior across different mixes, providing 
a standardized basis for evaluating their performance under cyclic loading conditions.  

f(σ) = a0 + a1cos(ϵω) + b1sin(ϵω) (1) 

Equation 1 is expressed in the form of a Fourier series, and the corresponding parameters for all the curves 
are presented in Table 3. Ic refers to the critical index used to indicate the initiation of significant damage or 
deterioration in the concrete material during repeated loading. 
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Table 3. Parameter details for eqn. 1 

Mix a0 a1 b1 w Ic 

M1 -0.34 0.28 1.32 1.40 0.98 

M2 0.41 -0.42 0.39 2.45 0.97 
M3 0.38 -0.36 0.52 2.21 0.98 

 

 

Fig. 2. Envelope stress-strain curve for M1 concrete 
 

 

Fig. 3. Envelope stress-strain curve for M2 concrete 
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Fig. 4. Envelope stress-strain curve for M3 concrete 

3. Energy Dissipation 

3.1. Energy dissipation ratio, Rn 

Perhaps one of the most crucial aspects of structural performance under repeated loadings lies in the struc-
ture's capacity to efficiently dissipate energy (Golias et al. 2021, Mirzai et al. 2020). In the present investiga-
tion, the energy-dissipation ratio, Rn, is utilized to measure the energy dissipated per loading and unloading 
cycle. Rn is characterized as the proportion of energy dissipated per cycle relative to the total input energy 
(Sucuoǧlu & Nurtuǧ 1995), as illustrated in Figure 5, representing a typical reloading-unloading cycle. The 
energy dissipated per cycle corresponds to the area enclosed by the re-loading or un-loading loops specific to 
that cycle. Total input energy per cycle refers to total stored strain energy during the reloading-unloading 
process. The area under the curve was determined using a digital planimeter. For each cycle of loading and 
unloading, three Rn values were obtained. The mean values were plotted against the non-dimensional envelope 
strains at peak of every cycle and against the normalized plastic strains during un-loading. 

3.2. Rn against envelope strain 

Figures 6, 7, and 8 show the plots of Rn ratio vs. normalized envelope strain, eE, for three grades of concrete 
tested. Based on the experimental points, using the least square method, a suitable single general empirical 
expression is formed (Eqn. 2) for all the three grades of concrete to fit the data best. 

𝑅௡ ൌ 𝛽ଵ𝑋 𝐼𝑛ሺ𝜀ாఈభ ൅ 1ሻ (2) 

The correlation index, i.e., obtained for these empirical curves, is 0.92 for M1, 0.96 for M2, and 0.95 for M3 
concrete. This observation suggests that each empirical curve fits well with the experimental data, indicating 
a favorable degree of accuracy and alignment between the predicted values and the actual measurements. The 
values of 1 are 0.55, 0.53, and 0.55 for M1, M2, and M3 concrete, respectively. The values of 1 are 0.485, 
0.45, and 0.48 for M1, M2 and M3 grades respectively. In general, the relationship between the energy-dissipa-
tion ratio, Rn, and envelope strain exhibits a bilinear pattern (Caldarone 2008, Ciampi et al. 1982, Golias et al. 
2021, Gong et al. 2022, Karsan 1968, Mirzai et al. 2020, Nazar & Sinha 2009, Sucuoǧlu & Nurtuǧ 1995, 
Q. Xie et al. 2021). The initial portion shows a linear increase in Rn with a high rate, accompanied by a rela-
tively slower rate of strain increase. Subsequently, there is another linear portion with a slower rate of Rn 
increase, coinciding with a faster rate of strain ratio increase. (Alshebani 1999, Naraine & Sinha 1989) have 
made similar observations for clay brick and sandblast brick masonry, respectively. A potential limitation of 
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the developed equation (Eqn. 2) is its assumption of a bilinear pattern in the relationship between the energy 
dissipation ratio (Rn) and normalized envelope strain (eE), which does not fully capture more intricate or non-
linear behaviors that could exist in certain conditions or materials. 

 

 

Fig. 5. Energy dissipation ratio Rn 
 

 

Fig. 6. Rn versus envelope strain for M1 
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Fig. 7. Rn versus envelope strain for M2 
 

 

Fig. 8. Rn versus envelope strain for M3 
 
In the case of M1 mix, the Rn ratio increases approximately linearly up to a value of approximately 0.2, 

corresponding to an envelope strain ratio of approximately 0.3, after which it again increases approximately 
linearly to a value of about 0.38, corresponding to an envelope strain ratio of 1.4. For M2 concrete, the Rn ratio 
increases linearly up to the value of approximately 0.2, corresponding to an envelope strain ratio of 0.33, after 
which it again increases approximately linearly to a value of 0.35, corresponding to an envelope strain ratio of 
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approximately 1.3. The M3 concrete Rn ratio increases approximately linearly to 0.21, corresponding to an en-
velope strain ratio of approximately 0.35. Then, it again increases approximately linearly to a value of approxi-
mately 0.36, corresponding to an envelope strain ratio of approximately 1.3. 

The initial rapid increase in the Rn ratio during the early stage of repeated loadings could be attributed to 
the formation and growth of microcracks in the concrete. As the loading progresses, the rate of Rn increase 
diminishes, which is attributed to the widening of the microcracks. The initial linear portion of Rn versus 
envelope strain (εE) curves can be linked to the material's elastic response, as the formation of microcracks 
does not lead to a significant accumulation of plastic strains (Yuan et al. 2019). In the case of M1 grade of 
concrete, the initial linear portion of the Rn curves exists up to an envelope strain ratio of around 0.3. Based on 
Figure 2, this envelope strain ratio corresponds to a stress ratio of 0.42. Therefore, it can be hypothesized from 
the energy dissipation characteristics that a stress ratio of 0.42 can be considered the elastic limit for M1 grade 
of concrete. The stress-strain curve also exhibits an approximately linear behavior up to a stress ratio of 0.42 
for M1 concrete. According to the plastic strain curves of εr versus εE presented in (Yuan et al. 2019), un-
loading from an envelope strain ratio of 0.3 results in a plastic strain ratio of 0.003. The extremely low value 
of plastic strain confirms the material's approximate elastic response. 

Similarly, for M2 and M3 concrete, the initial linear portion of the Rn curves exists up to an envelope strain 
ratio of approximately 0.33 and 0.35, respectively. From the envelope stress-strain curves (Figures 4 and 5), 
these values correspond to stress ratios of 0.46 and 0.5 for M2 and M3 concrete, respectively, which can be 
taken as their elastic limits. The envelope stress-strain curves are also observed to be linear up to these stress 
values. According to the plastic strain curves of plastic strain εr versus envelope strain εE presented in 
(Khadiranaikar 2003), un-loading from an envelope strain ratio of 0.33 and 0.35 results in a plastic strain of 
approximately 0.0025 and 0.002 for M2 and M3 concrete, respectively. Such small plastic strain ratio values 
support the elastic limit hypothesis. 

3.3. Rn against plastic strain 

The energy dissipation ratio Rn versus the non-dimensional plastic strain at unloading, r, for all three grades 
of concrete investigated, are plotted in Figures 9, 10, and 11. A similar empirical relationship was developed, 
which is given in Eqn. 3. 

𝑅௡ ൌ
ଵ

ఉమ
𝜀௥ఈమ𝑋𝐼𝑛ሺ𝜀௥ఈమ ൅ 1.2ሻ (3) 

The correlation index obtained for these empirical curves is 0.95, 0.92, and 0.94 for M1, M2, and M3 grades 
of concrete, respectively. This indicates a good fit of the empirical curves to the experimental data. The values 
of the constants 1 and 1) were obtained from the test data analysis. The values of 1 are 0.113, 0.1, and 0.113 
for M1, M2, and M3 concrete, respectively. The values of 1 are 1.781, 1.65, and 1.54 for M1, M2, and M3 
concrete, respectively. 

The Rn versus er curves also exhibit an approximate bilinear nature, similar to the Rn versus eE curves. The 
initial rapid increase in the Rn ratio during the early stage of repeated loadings is attributed to the development 
of microcracks, which do not lead to significant accumulation of plastic strains. However, as the microcracks 
widen, substantial plastic strain is developed, resulting in a low Rn ratio increase rate. For M1 concrete, the 
point at which the Rn versus er curve deviates from the initial linear portion occurs at a value of er (plastic 
strain) of nearly 0.03. The point where non-linearity in plastic strain begins can be interpreted as the point in 
the loading history denoting the beginning of the deterioration of the microcracks in the material. Based on the 
empirical plastic strain curve presented in (Milad 1999), the values of er of 0.03 for M1 concrete correspond to 
a value of eE of approximately 0.55, and the latter corresponds to an envelope stress ratio of 0.74 (Figure 2). 
Similarly, for M2 concrete, the value of er of 0.015 corresponds to a value of eE of approximately 0.55, and the 
latter corresponds to an envelope stress ratio of 0.75 (Figure 3). For M3 concrete, non-linearity begins at er of 
0.0135, which corresponds to an envelope strain ratio eE of approximately 0.56, which corresponds to an en-
velope stress ratio of 0.76. Consequently, based on the energy-dissipation characteristics, it is postulated that 
the stress ratios can serve as reliable damage indicators for the corresponding grades of concrete. 
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Fig. 9. Rn versus plastic strain for M1 concrete 

 

Fig.10. Rn versus plastic strain for M2 concrete 
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Fig. 11. Rn versus plastic strain for M3 concrete 

3.4. Discussions 

The results of this study align with observations made in related research (Khadiranaikar 2003, Park & Eom 
2004, Wang et al. 2020). The bilinear nature of the relationship between the energy-dissipation ratio (Rn) and 
both envelope strain (eE) and plastic strain (εr) is consistent with prior studies (Khadiranaikar 2003, Li et al. 
2024, Naraine & Sinha 1989, Yuan et al. 2019). The initial linear increase in Rn, attributed to microcrack 
formation and subsequent slower rates, is a pattern noted in clay brick masonry (Naraine & Sinha 1989) and 
sand-plast brick masonry (Yuan et al. 2019). The experimental data presented for the strain energy stored 
indicates an increasing trend with the strain and is similar to the stress-strain curve, indicating a fundamental 
correspondence between strain energy and the stress-strain curve. Damage occurring in the concrete has been 
characterized by cumulative damage and damping energy. Damage is progressive and characterized at very 
low strain levels. In the initial stages, damage was more in lower-strength specimens and less in higher-strength 
specimens. However, the trend changed and reversed near the peak strain, where damage is greater for higher-
strength specimens. There was a progressive increase of damping energy with the strain. Higher energy dissi-
pation was observed when damping higher-strength specimens.  

The empirical expressions proposed in this study for Rn against envelope and plastic strain exhibit favorable 
correlations, indicating good alignment with experimental data. However, these correlations should be inter-
preted considering potential variations in concrete mixtures, loading conditions, and specimen geometries. 
The empirical expressions assume a bilinear pattern in the relationship between Rn and envelope/plastic strain. 
This assumption oversimplifies the complexity of certain conditions or materials that exhibit more intricate or 
non-linear behaviors. The study focuses on three grades of concrete (M1, M2, M3), and the proposed relation-
ships will not be generalized well to different concrete mixtures with distinct material properties. The findings 
from this study have significant field applications, particularly in the design and evaluation of structures sub-
jected to cyclic or dynamic loading, such as bridges, pavements, and buildings in seismic zones. The identified 
energy dissipation characteristics and damage indicators, including the elastic limits and non-linear transitions 
in Rn values, provide information for engineers to optimize concrete performance under repeated loading 
conditions. These results can be integrated into seismic design codes to improve the safety and durability of 
infrastructure, assist in designing pavements resistant to wear and cracking, and enable more reliable health 
monitoring of bridges. 
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4. Summary and Conclusions 

In this investigation, the energy-dissipation characteristics of HPC under uniaxial repeated compressive 
loading are examined. The stress-strain hysteresis of the repeated loading was used to assess the energy-dissi-
pation capacity of HPC, and it was quantified through the dimensionless energy dissipation ratio, Rn. The Rn 
values are plotted against the normalized envelope strain and the normalized plastic strain for the three grades 
of concrete studied. Simple empirical relationships were proposed for these plots. The plots depicting the Rn 
ratio against both envelope and plastic strain exhibited a bilinear nature, with an initial linear high rate of 
increase in Rn, followed by a relatively slower linear rate of increase in Rn, alongside a higher increase in strain. 
The initial linear portion of the Rn versus envelope strain curves was associated with the material's elastic 
response. Based on these Rn curves, it is hypothesized that a stress level of 0.42fm, 0.46fm, and 0.5fm can serve 
as the elastic limits for M1, M2, and M3 concrete, respectively. Moreover, the relationship between Rn and er 
can be employed to identify the initiation of the strength deterioration process. The normalized stress levels of 
0.74, 0.75, and 0.76, corresponding to the points where the Rn versus er curve deviates from the initial linear 
portion, can be hypothesized as the damage indicators for M1, M2, and M3 concrete, respectively.  

Although the three grades of concrete exhibited similar energy dissipation behavior, this similarity can be 
attributed to the comparable mix designs and the similar composition of materials (such as fly ash, silica fume, 
and basalt aggregates) used in all three grades. The results suggest that, under repeated compressive loading, 
energy dissipation characteristics may be influenced more by the material composition and the loading condi-
tions than by the strength of the concrete alone. This finding highlights that energy dissipation can be a con-
sistent indicator of concrete performance across different HPC grades and can be applied to evaluating the 
behavior of HPC in structures subjected to cyclic loading. This research provides a basis for future investiga-
tions to investigate more intricate non-linear behaviors and additional influencing factors in high-performance 
concrete's cyclic response while encouraging practical applications of the developed empirical relationships in 
the design and evaluation of structures subjected to repeated loading. While the results of this study are valu-
able for understanding the energy dissipation capacity of HPC under cyclic loading, they may not fully repre-
sent the response of concrete structures under actual seismic conditions. Future research could aim to investi-
gate the effects of higher strain rates or dynamic loading on HPC to simulate realistic seismic behavior better. 
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