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Abstract: An effective application of artificial intelligence involves artificial neural networks. Artificial neural networks 
and linear regression models were developed to simulate the effects of using discarded ceramic waste as a subgrade for 
pavement. The ceramic waste was used at 2.5%, 5%, 7.5%, 10%, 12.5%, and 15%. A sample with 0% ceramic waste 
was tested to serve as a reference sample. The dataset was produced from laboratory experimentation findings used to 
train, test, and evaluate the model. A training set, a target set, and a prediction set were created from the dataset. The 
artificial neural network MSE was 0.42-1.40, while the linear regression model range was 1.74 to 3.63 for ceramic 
modified samples. The R2 range for the ANN model was 0.85-0.92, and the linear regression model exhibited a range 
of 0.71-0.78. The ANN model was more accurate than the linear regression model. Future studies are required to 
compare different machine-learning approaches for predicting soil mechanical properties. 
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1. Introduction 

With the advent of artificial intelligence and machine learning, pavement construction can be completed 
more quickly and precisely (Nouhi & Pour 2021). Monitoring road performance parameters is required to give 
users the necessary safety levels and driving comfort (Sollazzo et al. 2017). The performance of the subgrade 
material is equally as important as the structural performance of the pavement (Gong et al. 2018). It is the last 
part of any pavement design and is in charge of distributing traffic loads to the ground and preventing surface 
failure. Due to their affordability and environmental friendliness, waste materials are increasingly being con-
sidered for use as subgrade materials (Kumar et al. 2022). 

Ceramic waste is generated from its production unit and turns into waste after its use, such as building 
construction tiles, cookware, pottery, etc. This has prompted the use of ceramic waste as a possible building 
material. Deboucha et al. (2020) have evaluated the effects of cement, marble dust and ceramic waste in the 
pavement sub-base layer. Liu et al. (2024) examined the unconfined compressive strength of rice straw fibre-
reinforced soil and modelled it using a finite element approach. Chen et al. (2024) have employed decision 
tree, linear regression, and machine learning models to predict the unconfined compressive strength of geo-
polymer stabilised soil. Taseer et al. (2024) predicted the unconfined compressive strength of soil contaminated 
with heavy metal using gene-expressing programming, extreme machine learning machines, random forest 
and multiple linear regression. Zhao et al. (2024) modelled the unconfined compressive strength of low-strength 
waste soil using optimised support vector machine models. 

From the published literature, it can be inferred that unconfined compressive strength modelling has re-
cently gained attention for various soil types. However, modelling the performance of subgrade material mod-
ified by ceramic waste has yet to gain researchers' attention. Hence, this study was carried out to address the 
existing research gap. The objectives of this study are: 1. To assess the accuracy of artificial neural networks 
to predict unconfined compressive strength, and 2. To compare the performance of the ANN model and linear 
regression model for their performance.  

2. Data and Method Used 

2.1. Laboratory Data 

Laboratory testing for subgrade material was carried out to obtain actual data. The subgrade material was 
developed with zero ceramic waste as reference data. The ceramic waste specimens were prepared with varying 
percentage of 2.5% for each sample type. The varying percentage of ceramic waste was 2.5%, 5%, 7.5%, 10%, 
12.5% and 15%. The range has been selected based on previously published data from which it was observed 
that beyond 15%, there was no improvement in the properties of subgrade material (Cabalar et al. 2016, 
Deboucha et al. 2020, Oluwaseun 2018). 

https://creativecommons.org/licenses/by-sa/4.0/
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2.2. Artificial Neural Network model 

ANN application in pavement research is wide and has successfully predicted various aspects and proper-
ties. Traffic speed deflections (Mabrouk et al. 2021), pavement acoustic longevity (Cao et al. 2020), viscoe-
lastic behaviour (Sadat Hosseini et al. 2021), optimisation of asphalt mixes (Sebaaly et al. 2018) and thermal 
and mechanical properties of pavement material comprising of demolition waste (Ghorbani et al. 2021) are 
among some of the studies employing ANN for modelling.  

Fig. 1 presents this study's artificial neural network model for modelling pavement subgrade material prop-
erties modified using ceramic waste tiles. This study employed a multi-feed-forward neural network, which is 
also among the most employed in previous studies (Sollazzo et al. 2017). This study also employed the same 
as the parameters evaluated in this study are affected by various other soil properties. The typical neural net-
work model comprises three layers: the input layer, hidden layer, and out or target layer, which are intercon-
nected by layers of neurons. The function of neurons is to process input data based on a d-defined function and 
produce output results through a defined network topology. Specific weight (wi) is defined for each connection 
based on which the input data is altered (reduced or amplified). The relationship between input (ai), output (bi) 
and single neuron is presented in the equation below: 

f(X) = 
ଵ

ଵା ௫షభ
   (1) 

where X is the sum of wi ai of weighted ai input resulted from previous neurons. 
 

 

Fig. 1. ANN typical model consisting of three-layer prediction 

2.3. Linear regression model 

The linear prediction model performs well when the relationship between input and output variables is 
linear (Barua & Zou 2021). The linear regression model has been actively used in modelling pavement mate-
rials performance with additives (Sadat Hosseini et al. 2021). The linear regression model is among the most 
used tools for statistical analysis (Sadat Hosseini et al. 2021). The conventional linear regression model con-
cerning identical and independent observations (ai, bi) can be presented in the form of Equation 2 as follows: 

fbi = ax
1α + €I

 (2) 

where, m x 1 vector represents the unknown α, while independent and identically distributed value from a is 
presented by €I. α is generally estimated using equation 3 based on the ordinary least squares approach. 
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2.4. Accuracy of Model 

Mean square error (MSE) and coefficient of determination (R2) were employed to determine the model's 
accuracy. Pérez-Acebo et al. (2021) have modelled IRI of semi-rigid pavement with single carriageway roads 
and used R2 as a model accuracy measurement tool. Setyawan et al. (2015) employed R2 to evaluate the per-
formance of the regression model and predict the remaining life service of asphalt pavement based on the 
pavement condition index. The coefficient of determination is the proportion of variation between input and 
output variable which can be predicted from the independent variable. Typical R2 values range in between 0 to 
1. Values of R2 closer to 0 infer that model is not capable of predicting the target values from the given input 
values. While values closer to 1 indicate high precision prediction can be obtained with minimum error. R2 val-
ues equal to one infers that the model prediction performance is with zero error that means 100% accurate. 
On the contrary if the values are in negative it indicates worse fit model which exhibits the tendency of data 
itself to predict better than deploying the model for prediction. The R2 values were obtained base on the equa-
tion as follows: 

R2 = 1- 
భ
  
భ


∑ ሺି ^ሻమ

సభ

∑ ሺି ᇱሻమ

సభ

 (4) 

Where, 𝑎 is the measured value, 𝑎′  is an average value and 𝑎^ is the predicted value. Gong et al. (2018) 
used both measures (R2 & MSE) to evaluate the accuracy of the random forest regression model in predicting 
asphalt pavement IRI. Sollazzo et al. (2017) employed MSE to evaluate the accuracy of the ANN model to 
correlate structural and roughness performance of asphalt pavement. Xiao et al. (2020) also used MSE to eval-
uate the accuracy of multilayer perceptron for predicting surface roughness. Mean square error values are 
totally in contrast concerning R2 values inference. The lower the value, the better the model performance, and 
the higher the value, the model performance has no accuracy. Mean square error, when based on N number of 
data, it can be estimated using equation 5: 

Mean Square Error (MSE) = 
ଵ

ே
∑ ሺ𝑎 ି 𝑝ሻଶ

ୀ  (5) 

Where, pi is the predicted values obtained from the model and ti is the expected output. 

3. Results and Discussion 

ANN model identifies the optimum model based on input data. The optimised model represents the best 
interrelationship of input and output data. Overfitting is one of the vital issues faced during the optimisation 
of the model, as the optimised model should be more generalised. Hence, the dataset is divided into two sets, 
one on which the neural network is trained and another on which the trained algorithm is tested. Several studies 
suggest the division between 70% and 30% for training and testing data, respectively. However, the range of 
testing data has also been given as between 15-30% (Ghorbani et al. 2020). The training data provides the base 
for the neural model to establish the behaviour of variables in the dataset. The test data set evaluates the model's 
accuracy to predict actual values based on unseen datasets. In this study, 85% of the dataset was identified as 
training data and 15% was taken as testing data. The model accuracy was measured in terms of R2 and MSE. 
The testing data model performance revealed that the ANN model was performing better than the LR approach. 
The R2 value was observed to be 0.91 for the ANN model, and the MSE value was 0.47. For the LR model, 
the R2 value was observed to be 0.72, and the MSE value was 4.09. The prediction results in testing data for 
the ANN and LR models are presented in Figure 2. On the right side of the figure, ANN models prediction 
versus actual is presented starting from top to bottom for 0%, 2.5%, 5%, 7.5%, 10%, 12.5% and 15%, respec-
tively. Similarly, from top to bottom, LR models are presented on the left side for respective ceramic waste 
percentages. The R2 value for the 0% ceramic waste sample for the ANN prediction model was 0.9, while for 
the LR model, it was 0.71. For 2.5%, 5%, 7.5%, 10%, 12.5% and 15% ceramic waste samples, the R2 value 
was between 0.85-0.92 for the ANN model and the LR model, the R2 range was observed to be 0.71-0.78. The 
highest accuracy was observed for soil samples with 7.5% ceramic waste. This can be attributed to minimum 
variation and reduced error in the unconfined compressive strength and predicted value, respectively. 
Wakjira et al. (2024) reported an R2 value of 0.90-0.99 while using a hybrid machine-learning approach for predict-
ing ultra-high-performance concrete. Afolagboye et al. (2023) observed an R2 value of 0.90-0.95 for predicting 
the unconfined compressive strength of rocks using a machine-learning approach. Ahmadi Sheshde & Cheshomi 
(2015) found an R2 value of more than 0.9 for predicting unconfined compressive rocks using a modified point load 
force approach. Ahenkorah et al. (2023) analysed enzyme-induced carbonate precipitation and microbial-induced 
carbonate precipitation ground improvement technique and employed evolutionary polynomial regression to model 
the unconfined compressive strength of sand specimens with an MSE value of 0.075. Table 1 presents the compar-
ison of model accuracy in comparison to this study. 
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Fig. 2a. Actual vs predicted unconfined compressive strength of soil sample tested at 0%, 2.5%, and 5% for ANN  
(left side from top to bottom) and LR (right side from top to bottom), respectively 
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Fig. 2b. Actual vs predicted unconfined compressive strength of soil sample tested at 7.5%, 10%, and 12.5% for ANN  
(left side from top to bottom) and LR (right side from top to bottom), respectively 
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Fig. 2c. Actual vs predicted unconfined compressive strength of soil sample tested at 15% for ANN (left side from top 
to bottom) and LR (right side from top to bottom) respectively 

 
Table 1. Studies predicting unconfined compressive strength of soil using different prediction approach and their 
accuracy in comparison with this study's results 

Material 
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deep learning method /R2 = 0.9966 (Yao et al. 2024) 
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Low strength waste soil 
SVR model/ R2 = 0.909,  
MSE = 0.011, RMSE = 0.105,  
MAE = 0.085 and MAPE = 15.502%  

(Zhao et al. 2024) 

One-part geopolymer  
stabilised soil 

PSO-XGBOOST & PSO-ET/  
R2 = 9964 & R2 = 0.9928 

(Chen et al. 2024) 

Heavy metal contaminated soil 
Extreme learning machine/  
R2 = 0.964 

(Taseer et al. 2024) 

Microbial/enzyme induced  
carbonate precipitation  
treated sand 

Genetic Algorithm/ MSE = 0.075, 
RMSE = 0.273 

(Ahenkorah et al. 2023)  

Fly ash treated alkali soil 
GEP-tree based AI approach/ R>0.8, 
MAE = 24.19 MPa,  
RMSE = 33.15 MPa 

(Ashfaq et al. 2022) 

4. Conclusion 

This study investigated the potential modelling of the unconfined compressive strength of soil modified 
with ceramic waste to be used as sub-grade material for pavement. The ceramic waste was added at 0%, 2.5%, 
5%, 7.5%, 10%, 12.5% and 15%. The artificial neural network and linear regression approach were used to 
model the unconfined compressive strength of specimens. The results of the developed model indicated that 
the artificial neural network was more accurate than the linear regression model. The model performance was 
validated based on mean square error and coefficient of determination. The artificial neural network MSE was 
0.42-1.4, while the linear regression model range was 1.74 to 3.63 for ceramic-modified samples. The R2 range 
for the ANN model was 0.85-0.92, and the linear regression model exhibited a range of 0.71-0.78. The ANN 
model was more accurate than the linear regression model. Future studies are required to compare different 
machine-learning approaches for predicting soil mechanical properties. This study was limited to the uncon-
fined compressive strength of concrete. To provide a comprehensive modelling approach, more studies are re-
quired to model UCS along with shear strength, California bearing ratio, and soaked and wet condition variations. 
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