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Abstract: This article investigates the application of neural network models to create automated control systems for industrial processes. We reviewed and analysed works on dispatch control and evaluation of equipment operating modes and the use of artificial neural networks to solve problems of this type. It is shown that the main requirements for identification models are the accuracy of estimation and ease of algorithm implementation. It is shown that artificial neural networks meet the requirements for accuracy of classification problems, ease of execution and speed. We considered the structures of neural networks that can be used to recognise the modes of operation of technological equipment. Application of the model and structure of networks with radial basis functions and multilayer perceptrons for identifying the mode of operation of equipment under given conditions is substantiated. The input conditions for constructing neural network models of two types with a given three-layer structure are offered. The results of training neural models on the model of a multilayer perceptron and a network with radial basis functions are presented. The estimation and comparative analysis of models depending on model parameters are made. It is shown that networks with radial basis functions offer greater accuracy in solving identification problems. The structural scheme of the automated process control system with mode identification based on artificial neural networks is offered.
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1. Introduction
Due to the development of digital technologies, more data is becoming available for control systems. The operation mode of the equipment is determined, as a rule, not by one parameter but by a set of parameters. However, the increase in the amount of information leads to an overload of the operator, which is most dangerous in critical situations: a stressful state of an operator, in combination with the growing flow of data about the plant, leads to incorrect decisions and even more significant losses. The advantage of operators in the control system is their experience in assessing operating modes, and the advantage of automated control systems is reliability and speed in decision-making. Therefore, there is a need to develop systems that could work in real-time to support or substitute the operator. Restoration of the normal operation of the equipment begins from the moment of identification of the event that caused the malfunction or violation of the mode.
2. Analysis of recent research and publications
The heuristic nature of human operator decision-making and the implicit functional relationship between the causes of equipment failures provide the precondition for creating systems based on artificial intelligence. Expert systems, fuzzy logic, neural networks and genetic algorithms are used with varying degrees of success to create support and management systems (Kalinchyk et al. 2021, Warwick et al. 1997).
The main advantage of Artificial Neural Networks (ANN) in diagnosing equipment failures is their flexibility with significant data flow and information interference. The main disadvantage is the duration of the training and the need for significant training samples that characterise the situation. Generalised regression neural networks (GRNN) with direct signal topology, probabilistic neural network (PNN), or adaptive (self-organised) fuzzy neural networks can be used to reduce learning time to acceptable results (Rolim et al. 2003).
Experience in the operation of electric motors shows many failures associated with emergencies (Ponomarev et al. 2011).

Failure of the engine causes significant damage, associated with both downtime of technological equipment and the need for repair work. Additional damage can occur due to reduced electrical and fire safety, which is associated with possible short circuits in the windings of the damaged motor. It is known that when the engine is running, there are short-term fluctuations in electrical quantities, such as current, power, and voltage. Therefore, while analysing the waveform of electrical quantities, it is possible to determine the possible damage and determine its type. For example, by constructing an approximation function on several points of the signal that characterises a particular type of damage, and in the process of diagnosis, to compare the current values with the values of this function with a certain error. Artificial neural networks are used to build mathematical models of various processes, pattern recognition and signal prediction. Examples of using ANN to solve problems related to automated control are: the estimation of the spectral composition of the information signal and classification of signals for decision-making (Malisuwan et al. 2016, Faek et al. 2009), classification of non-stationary data to create automatic control systems (Venkatesan et al. 2018), operational control of technological processes (Yang et al. 2021). Thus, neural networks make it possible to effectively determine the mode of operation of the complex and highlight the influence of individual factors on the target function, reflecting only the existence between the input and output values of the objective relationships.
3. The goal of this paper
This paper investigates the crushing and grinding complex’s characteristics and modes of operation. The work aims to create a control system of a crushing and grinding complex to identify the mode of operation. The following objectives are addressed in the paper to achieve this goa:
· determining operating modes of the crushing and grinding complex,
· selecting the type and configuration of the artificial neural network to identify the mode of operation of the plant,
· modelling the operating modes of the plant and evaluating the quality of the neural network to identify the state,
· creating a structural scheme of the control system of the crushing and grinding complex.
4. Presentation of the primary research material
When assessing the operational condition of the equipment, there are three provisions (Lukomski et al. 2003, Nguyen et al. 1995):
· normal or safe condition, where all indicators of the process are within normal limits,
· a warning or critical condition, where one or more indicators are approaching dangerous values,
· emergency or dangerous condition in which the normalised values are exceeded.

When approaching emergency conditions, the operator’s load increases due to the flow of data that requires processing, which is called the “curse of dimensionality”. However, the problem of exponential growth of information flow can be solved with the help of artificial neural networks.
Among the many types of ANN, it is worth noting that the multilayer perceptron, trained in the algorithm of backpropagation of error, capable of online learning. However, the main problem in the work of the perceptron is the selection of a training sequence of sufficient volume.
Multilayer perceptron (MLP) (Fig. 1) is described by the following equations (Kruglov et al. 2002).


Fig. 1. Multilayer perceptron

At n inputs, input signals are fed, which then fall on the synapses of the three neurons that form the output layer of the network. At the outputs of the network, signals are generated:
	

	(1)



The synapse weights of one layer of neurons can be represented as a matrix W, in which each element wij sets the value of the i-th synaptic connection of the j-th neuron. Thus, the processes occurring in the MLP neural network can be presented in matrix form:

,	(2)
where:
X and Y – input and output vectors, respectively,
F – an activation function applied element by element to the parameters X, W.

Another type of network used to solve classification problems is the radial basis function (RBF) network. Networks with RBFs in the simplest form consist of three layers: the input layer that performs the distribution of sample data for the first layer of weights and the hidden and source layer (Callan 2000). The mapping from the input layer to the hidden layer is non-linear, while the mapping from the hidden layer to the output layer is linear.
Some hidden function φ is connected with each hidden element. Each of these functions accepts a combined input and generates an output activity value. The set of activity values of all hidden elements determines the vector on which the input vector is displayed.

,	 (3)
where:
M – the number of hidden elements,
x – the input vector.

The connections of the elements of the hidden element determine the centre of the radial function for this hidden element. The input for each element is chosen equal to the Euclidean form:

,	(4)
where:
n – the number of input elements.

Various functions are used for hidden elements, such as the Gaussian function:


or .	(5)
Radial basis function (RBF) networks and multilayer perceptron (MLP) networks are examples of non-linear multilayer direct propagation networks (Haykin 2009). Both are universal approximators. However, these two types of networks differ in some essential aspects.
1. An RBF network has one hidden layer, and a multilayer perceptron can have many hidden layers.
2. Typically, computational nodes of a multilayer perceptron, which are located in the hidden and source layers, use the same neuron model. Hidden network computing nodes with radial basis functions may differ from the source layer and serve different purposes.
3. The hidden layer of an RBF network is non-linear, while the source layer is linear. In a multilayer perceptron (MLP), the latent and source layers used as a classifier are non-linear. If an MLP is used to solve non-linear regression problems, linear neurons are usually chosen as the nodes of the source layer.
4. The argument of the activation function of each hidden node of the RBF network is the Euclidean norm between the input vector and the centre of the radial function. The argument of the activation function of each hidden node is the scalar product of the input vector and the vector of synaptic weights of this neuron.

In order to build a control system without any plant operator, it is necessary to solve the problem of error-free recognition of emergency modes and distinguish them from short-term modes allowed for this plant. This task is to identify the signs (properties) of the controlled plant and characteristics of the predominant class of modes and then develop the principle of operation of the protection and control system. The peculiarity of statistical image recognition is that the mode studied and described by n-parameters can be represented as an 
n-dimensional space of observations. If one gets a training statistical sample of situations with established affiliation to a class of modes, one can build in the space of boundary modes boundary surfaces that separate situations of different classes. The recognition procedure is a decision to establish belonging to a particular class of a new situation by comparing its parameters.
The paper evaluates and classifies the modes of operation of the crushing and grinding complex based on data on specific power consumption (W), performance (Q), the load of the mill (M) and grinding tone (T), which characterises the quality of the original product. The total sample of observations consists of 113 observations, which is provided in the form of a table (Table 1) and a graph of the distribution in the coordinates of specific power consumption (W) and performance (Q) (Fig. 2). Modes are divided into three classes: a – mode of optimal performance and electricity consumption, b – mode of low performance, c – mode of inflated specific electricity consumption. The classification will be based on 80 observations, and the last day’s data will serve as a control sequence to verify the model’s accuracy. The model’s accuracy will be assessed by the average value of the relative error in the control sequence and the value of the relative error in classification.

Table 1. Indicators of operating modes of the complex
	№
	Q
	M
	W
	T
	Class
	№
	Q
	M
	W
	T
	Class

	
	x1
	x2
	y
	z
	
	
	x1
	x2
	y
	z
	

	1
	8.65
	0.98
	30.630
	14.00
	b
	27
	9.90
	0.68
	27.820
	14.00
	a

	2
	9.90
	0.96
	25.413
	17.75
	a
	28
	10.10
	0.64
	28.000
	15.25
	a

	3
	8.80
	0.91
	29.043
	14.00
	b
	29
	10.60
	0.61
	24.350
	14.80
	a

	4
	10.2
	0.86
	39.707
	17.00
	b
	30
	10.40
	0.59
	27.080
	13.50
	a

	5
	9.40
	0.84
	40.446
	16.00
	b
	31
	10.40
	0.57
	26.880
	14.00
	a

	6
	10.40
	0.82
	27.872
	18.00
	a
	32
	10.00
	0.54
	27.940
	14.25
	a

	7
	11.00
	0.78
	24.402
	19.00
	a
	33
	10.20
	0.51
	26.360
	14.00
	a

	8
	9.90
	0.76
	27.723
	12.50
	a
	34
	9.95
	0.49
	26.950
	12.75
	a

	9
	10.60
	0.73
	28.136
	18.50
	a
	35
	9.90
	0.94
	26.390
	16.75
	a

	10
	10.00
	0.71
	24.315
	16.50
	a
	36
	10.80
	0.90
	29.310
	13.90
	a

	11
	9.60
	0.70
	25.760
	14.50
	a
	37
	10.50
	0.87
	30.390
	11.75
	a

	12
	9.30
	0.66
	28.110
	16.75
	b
	38
	10.80
	0.83
	30.340
	13.50
	a

	13
	9.50
	0.63
	27.903
	13.75
	b
	39
	10.80
	0.80
	26.980
	15.25
	a

	14
	9.60
	0.59
	28.797
	16.00
	a
	40
	10.80
	0.77
	30.110
	12.75
	a

	15
	9.20
	0.57
	27.627
	16.00
	b
	41
	10.80
	0.73
	29.120
	13.70
	a

	16
	9.10
	0.55
	28.951
	14.15
	b
	42
	10.50
	0.71
	31.410
	13.00
	a

	17
	9.50
	0.98
	32.845
	14.75
	b
	43
	9.90
	0.69
	33.590
	14.75
	b

	18
	10.00
	0.96
	33.319
	13.50
	a
	44
	8.40
	0.65
	42.200
	17.00
	b

	19
	10.40
	0.92
	29.870
	14.00
	a
	45
	10.30
	0.64
	29.710
	18.25
	a

	20
	11.20
	0.88
	26.102
	16.50
	a
	46
	11.90
	1.06
	35.770
	19.75
	a

	21
	10.80
	0.84
	27.543
	16.50
	a
	47
	10.20
	1.05
	31.580
	21.00
	a

	22
	9.80
	0.82
	27.884
	14.75
	a
	48
	9.40
	1.03
	31.730
	24.50
	b

	23
	10.10
	0.78
	29.882
	13.75
	a
	49
	11.00
	1.01
	31.500
	18.50
	a

	24
	11.00
	0.74
	26.494
	20.50
	a
	50
	11.20
	0.98
	29.470
	17.50
	a

	25
	10.20
	0.72
	30.420
	11.20
	a
	51
	11.60
	0.95
	30.860
	20.80
	a

	26
	10.20
	0.70
	26.620
	12.50
	a
	52
	10.90
	0.92
	28.860
	18.50
	a



Table 1. cont.
	№
	Q
	M
	W
	T
	Class
	№
	Q
	M
	W
	T
	Class

	
	x1
	x2
	y
	z
	
	
	x1
	x2
	y
	z
	

	53
	10.60
	0.89
	32.320
	18.50
	a
	84
	9.75
	0.4
	21.65
	15.75
	a

	54
	9.40
	0.86
	28.660
	16.00
	b
	85
	9.7
	0.38
	25.36
	18.25
	a

	55
	8.40
	0.84
	30.860
	12.00
	b
	86
	10.6
	0.36
	23.85
	19.25
	a

	56
	9.80
	0.82
	30.720
	13.50
	a
	87
	10.3
	0.83
	27.07
	22.00
	a

	57
	10.60
	0.79
	28.200
	14.00
	a
	88
	9.5
	0.79
	31.97
	18.00
	b

	58
	9.5
	0.77
	28.84
	26.00
	b
	89
	10.0
	0.77
	32.21
	15.90
	a

	59
	8.9
	0.73
	35.39
	19.00
	b
	90
	10.4
	0.73
	32.92
	17.25
	a

	60
	10.5
	0.72
	31.07
	23.00
	a
	91
	9.6
	0.69
	28.28
	19.25
	a

	61
	10.3
	0.69
	29.57
	20.00
	a
	92
	10.6
	0.66
	29.56
	19.65
	a

	62
	10.7
	0.65
	25.25
	18.75
	a
	93
	10.6
	0.62
	24.34
	21.90
	a

	63
	11.6
	0.62
	26.67
	23.00
	a
	94
	10.1
	0.59
	31.86
	19.33
	a

	64
	11.1
	0.61
	23.61
	23.00
	a
	95
	10.3
	0.56
	30.83
	16.50
	a

	65
	10.2
	0.59
	28.87
	16.25
	a
	96
	10.3
	0.53
	31.97
	18.50
	a

	66
	9.97
	0.56
	28.78
	24.33
	a
	97
	10.3
	0.52
	24.34
	21.70
	a

	67
	12.0
	0.53
	35.83
	23.50
	a
	98
	10.3
	0.5
	28.14
	20.00
	a

	68
	11.8
	0.53
	32.81
	21.00
	a
	99
	10.3
	0.49
	24.06
	21.00
	a

	69
	11.6
	0.93
	29.74
	18.75
	a
	100
	10.3
	0.48
	28.14
	20.00
	a

	70
	11.6
	0.88
	30.97
	18.50
	a
	101
	10.0
	0.93
	31.13
	19.85
	a

	71
	11.6
	0.84
	29.45
	19.50
	a
	102
	9.8
	0.88
	32.65
	20.00
	a

	72
	11.4
	0.82
	30.07
	21.50
	a
	103
	9.7
	0.81
	32.49
	20.00
	a

	73
	11.3
	0.76
	30.59
	17.50
	a
	104
	10.1
	0.79
	30.56
	18.50
	a

	74
	11.8
	0.71
	28.55
	20.00
	a
	105
	9.97
	0.75
	31.24
	18.33
	a

	75
	10.8
	0.67
	28.94
	18.25
	a
	106
	10.1
	0.72
	32.38
	24.40
	a

	76
	11.2
	0.63
	25.72
	22.50
	a
	107
	9.3
	0.69
	32.48
	24.00
	b

	77
	10.6
	0.59
	24.06
	21.50
	a
	108
	10.0
	0.68
	37.49
	15.50
	b

	78
	10.3
	0.56
	27.66
	17.00
	a
	109
	9.5
	0.66
	30.17
	13.00
	b

	79
	10.2
	0.54
	24.65
	17.25
	a
	110
	9.33
	0.64
	29.70
	14.17
	a

	80
	10.4
	0.51
	25.55
	19.60
	a
	111
	9.6
	0.62
	35.25
	14.50
	b

	81
	10.4
	0.48
	24.48
	18.85
	a
	112
	9.2
	0.6
	31.09
	13.50
	b

	82
	10.2
	0.44
	22.65
	18.75
	a
	113
	9.1
	0.59
	29.45
	18.00
	b

	83
	10.2
	0.42
	24.54
	19.00
	a
	
	
	
	
	
	



Fig. 2. Graphic representation of operating modes of the complex

Multilayer perceptron and networks with radial basis functions are accepted as models for the classification of modes. The number of inputs (2-3) of the network is determined by the number of parameters that determine the operating mode. In order to obtain a value that describes the target categorised function, three source elements are used, which correspond to a given number of classes. The number of neurons in the hidden layer of the perceptron is set at 3 to 25, and at 10 to 50 for networks with radial basis functions and will be adjusted depending on the accuracy of the model, which will be determined by performance on training and test sequences (70, 15 and 15% of the total sample respectively and selected at random). Threshold activation functions may take linear, logistic, hyperbolic, and exponential values. The error function is determined by the method of least squares and cross-entropy. We considered 2000 networks with randomly formed initial weights, from which the 50 best results are automatically selected based on which conclusions will be made about the suitability of networks to solve this type of problem. Network learning algorithms are BFGS (Broyden - Fletcher - Goldfarb - Shanno algorithm) for perceptron and RBFT (Redundant Byzantine Fault. Tolerance). The outcomes of neural network learning are presented in Table 2. Table 2 uses the following notation: Training perf. – network performance on input data; Test perf. – network performance on the test sequence: Validation perf. – network performance on the control sequence. Productivity refers to the percentage of correct classification in the data sample. The sum of squares of deviations (SOS) and cross-entropy (Entropy) are used as the Error function. The Hidden activation functions in the networks with the best performance are linear (Identity), logistic or sigmoidal (Logistic), hyperbolic tangent (Tanh), exponential (Exponentia) and Gaussian (Gaussian) functions.
Table 3 presents the matrix of errors for each of the constructed networks, which contains the percentage of correctly or incorrectly classified data for each class and the total number for all classes. All trained networks have no errors in the training sequences. In the test and control sequences, the learning error for all classes does not exceed 6.25% for individual networks. These results indicate sufficient accuracy of networks.

Table 2. Neural Networks Learning Outcomes (Q, W, M)
	№
	Net. name
	Training perf.
	Test perf.
	Validation perf.
	Training algorithm
	Error function
	Hidden activation

	1
	RBF 3-10-3
	91.3580247
	100
	100
	RBFT
	SOS
	Gaussian

	2
	RBF 3-50-3
	98.7654321
	93.75
	100
	RBFT
	Entropy
	Gaussian

	3
	RBF 3-10-3
	82.7160494
	93.75
	100
	RBFT
	SOS
	Gaussian

	4
	RBF 3-50-3
	100
	93.75
	100
	RBFT
	Entropy
	Gaussian

	5
	RBF 3-50-3
	95.0617284
	93.75
	100
	RBFT
	Entropy
	Gaussian

	6
	RBF 3-10-3
	93.8271605
	87.50
	100
	RBFT
	Entropy
	Gaussian

	7
	RBF 3-10-3
	91.3580247
	81.25
	100
	RBFT
	Entropy
	Gaussian

	8
	RBF 3-10-3
	95.0617284
	93.75
	100
	RBFT
	Entropy
	Gaussian

	9
	MLP 3-10-3
	90.1234568
	87.50
	100
	BFGS 8
	Entropy
	Identity

	10
	RBF 3-50-3
	97.5308642
	87.50
	100
	RBFT
	Entropy
	Gaussian

	11
	RBF 3-10-3
	90.1234568
	81.25
	100
	RBFT
	SOS
	Gaussian

	12
	RBF 3-10-3
	91.3580247
	81.25
	100
	RBFT
	Entropy
	Gaussian

	13
	RBF 3-50-3
	100
	93.75
	100
	RBFT
	Entropy
	Gaussian

	14
	MLP 3-8-3
	86.4197531
	93.75
	93.75
	BFGS 8
	Entropy
	Identity

	15
	RBF 3-10-3
	97.5308642
	93.75
	100
	RBFT
	Entropy
	Gaussian

	16
	RBF 3-10-3
	95.0617284
	93.75
	100
	RBFT
	Entropy
	Gaussian

	17
	RBF 3-10-3
	95.0617284
	93.75
	100
	RBFT
	Entropy
	Gaussian

	18
	RBF 3-10-3
	81.4814815
	93.75
	93.75
	RBFT
	Entropy
	Gaussian

	19
	RBF 3-10-3
	91.3580247
	87.50
	93.75
	RBFT
	Entropy
	Gaussian

	20
	RBF 3-50-3
	100
	100
	93.75
	RBFT
	Entropy
	Gaussian

	21
	MLP 3-9-3
	96.2962963
	93.75
	93.75
	BFGS 15
	Entropy
	Logistic

	22
	RBF 3-10-3
	97.5308642
	87.50
	93.75
	RBFT
	Entropy
	Gaussian

	23
	RBF 3-10-3
	83.9506173
	87.50
	93.75
	RBFT
	Entropy
	Gaussian

	24
	RBF 3-50-3
	96.2962963
	93.75
	93.75
	RBFT
	Entropy
	Gaussian

	25
	RBF 3-50-3
	98.7654321
	93.75
	93.75
	RBFT
	Entropy
	Gaussian


Table 2. cont.
	№
	Net. name
	Training perf.
	Test perf.
	Validation perf.
	Training algorithm
	Error function
	Hidden activation

	26
	RBF 3-10-3
	91.3580247
	93.75
	93.75
	RBFT
	Entropy
	Gaussian

	27
	RBF 3-10-3
	86.4197531
	87.50
	93.75
	RBFT
	Entropy
	Gaussian

	28
	MLP 3-4-3
	97.5308642
	87.50
	93.75
	BFGS 23
	SOS
	Identity

	29
	RBF 3-10-3
	88.8888889
	81.25
	93.75
	RBFT
	SOS
	Gaussian

	30
	RBF 3-10-3
	87.654321
	93.75
	93.75
	RBFT
	SOS
	Gaussian

	31
	RBF 3-10-3
	86.4197531
	81.25
	93.75
	RBFT
	SOS
	Gaussian

	32
	MLP 3-4-3
	80.2469136
	93.75
	93.75
	BFGS 20
	SOS
	Exponential

	33
	RBF 3-10-3
	91.3580247
	93.75
	93.75
	RBFT
	Entropy
	Gaussian

	34
	MLP 3-8-3
	97.5308642
	93.75
	93.75
	BFGS 18
	Entropy
	Tanh

	35
	RBF 3-10-3
	91.3580247
	93.75
	93.75
	RBFT
	Entropy
	Gaussian

	36
	RBF 3-10-3
	80.2469136
	81.25
	93.75
	RBFT
	SOS
	Gaussian

	37
	RBF 3-50-3
	100
	93.75
	93.75
	RBFT
	Entropy
	Gaussian

	38
	RBF 3-50-3
	98.7654321
	93.75
	93.75
	RBFT
	SOS
	Gaussian

	39
	RBF 3-50-3
	93.8271605
	93.75
	93.75
	RBFT
	Entropy
	Gaussian

	40
	RBF 3-10-3
	85.1851852
	87.50
	100
	RBFT
	Entropy
	Gaussian

	41
	RBF 3-10-3
	91.3580247
	93.75
	93.75
	RBFT
	Entropy
	Gaussian

	42
	MLP 3-9-3
	90.1234568
	93.75
	93.75
	BFGS 36
	SOS
	Identity

	43
	RBF 3-50-3
	97.5308642
	93.75
	93.75
	RBFT
	Entropy
	Gaussian

	44
	RBF 3-50-3
	98.7654321
	93.75
	93.75
	RBFT
	SOS
	Gaussian

	45
	RBF 3-10-3
	96.2962963
	93.75
	93.75
	RBFT
	Entropy
	Gaussian

	46
	RBF 3-10-3
	90.1234568
	81.25
	93.75
	RBFT
	SOS
	Gaussian

	47
	RBF 3-10-3
	87.654321
	87.50
	93.75
	RBFT
	Entropy
	Gaussian

	48
	RBF 3-50-3
	100
	93.75
	93.75
	RBFT
	Entropy
	Gaussian

	49
	RBF 3-10-3
	88.8888889
	93.75
	100
	RBFT
	Entropy
	Gaussian

	50
	RBF 3-10-3
	88.8888889
	93.75
	93.75
	RBFT
	Entropy
	Gaussian



Table 3. Network errors in the training, test and control sequences
	Learning sequence

	
	
	Class-a
	Class-b
	Class-c
	Class-All

	13.RBF 3-50-3
	Total
	45.0000
	16.0000
	20.0000
	81.0000

	
	Correct
	45.0000
	16.0000
	20.0000
	81.0000

	
	Incorrect
	0.0000
	0.0000
	0.0000
	0.0000

	
	Correct (%)
	100.0000
	100.0000
	100.0000
	100.0000

	
	Incorrect (%)
	0.0000
	0.0000
	0.0000
	0.0000




Table 3. cont.
	Learning sequence

	
	
	Class-a
	Class-b
	Class-c
	Class-All

	20.RBF 3-50-3
	Total
	45.0000
	16.0000
	20.0000
	81.0000

	
	Correct
	45.0000
	16.0000
	20.0000
	81.0000

	
	Incorrect
	0.0000
	0.0000
	0.0000
	0.0000

	
	Correct (%)
	100.0000
	100.0000
	100.0000
	100.0000

	
	Incorrect (%)
	0.0000
	0.0000
	0.0000
	0.0000

	37.RBF 3-50-3
	Total
	45.0000
	16.0000
	20.0000
	81.0000

	
	Correct
	45.0000
	16.0000
	20.0000
	81.0000

	
	Incorrect
	0.0000
	0.0000
	0.0000
	0.0000

	
	Correct (%)
	100.0000
	100.0000
	100.0000
	100.0000

	
	Incorrect (%)
	0.0000
	0.0000
	0.0000
	0.0000

	48.RBF 3-50-3
	Total
	45.0000
	16.0000
	20.0000
	81.0000

	
	Correct
	45.0000
	16.0000
	20.0000
	81.0000

	
	Incorrect
	0.0000
	0.0000
	0.0000
	0.0000

	
	Correct (%)
	100.0000
	100.0000
	100.0000
	100.0000

	
	Incorrect (%)
	0.0000
	0.0000
	0.0000
	0.0000

	Test sequence

	
	
	Class-a
	Class-b
	Class-c
	Class-All

	13.RBF 3-50-3
	Total
	10.0000
	5.0000
	1.0000
	16.0000

	
	Correct
	9.0000
	5.0000
	1.0000
	15.0000

	
	Incorrect
	1.0000
	0.0000
	0.0000
	1.0000

	
	Correct (%)
	90.0000
	100.0000
	100.0000
	93.7500

	
	Incorrect (%)
	10.0000
	0.0000
	0.0000
	6.2500

	20.RBF 3-50-3
	Total
	10.0000
	5.0000
	1.0000
	16.0000

	
	Correct
	10.0000
	5.0000
	1.0000
	16.0000

	
	Incorrect
	0.0000
	0.0000
	0.0000
	0.0000

	
	Correct (%)
	100.0000
	100.0000
	100.0000
	100.0000

	
	Incorrect (%)
	0.0000
	0.0000
	0.0000
	0.0000

	37.RBF 3-50-3
	Total
	10.0000
	5.0000
	1.0000
	16.0000

	
	Correct
	9.0000
	5.0000
	1.0000
	15.0000

	
	Incorrect
	1.0000
	0.0000
	0.0000
	1.0000

	
	Correct (%)
	90.0000
	100.0000
	100.0000
	93.7500

	
	Incorrect (%)
	10.0000
	0.0000
	0.0000
	6.2500


Table 3. cont.
	Test sequence

	
	
	Class-a
	Class-b
	Class-c
	Class-All

	48.RBF 3-50-3
	Total
	10.0000
	5.0000
	1.0000
	16.0000

	
	Correct
	9.0000
	5.0000
	1.0000
	15.0000

	
	Incorrect
	1.0000
	0.0000
	0.0000
	1.0000

	
	Correct (%)
	90.0000
	100.0000
	100.0000
	93.7500

	
	Incorrect (%)
	10.0000
	0.0000
	0.0000
	6.2500

	Control sequence

	
	
	Class-a
	Class-b
	Class-c
	Class-All

	13.RBF 3-50-3
	Total
	7.0000
	5.0000
	4.0000
	16.0000

	
	Correct
	7.0000
	5.0000
	4.0000
	16.0000

	
	Incorrect
	0.0000
	0.0000
	0.0000
	0.0000

	
	Correct (%)
	100.0000
	100.0000
	100.0000
	100.0000

	
	Incorrect (%)
	0.0000
	0.0000
	0.0000
	0.0000

	20.RBF 3-50-3
	Total
	7.0000
	5.0000
	4.0000
	16.0000

	
	Correct
	7.0000
	5.0000
	3.0000
	15.0000

	
	Incorrect
	0.0000
	0.0000
	1.0000
	1.0000

	
	Correct (%)
	100.0000
	100.0000
	75.0000
	93.7500

	
	Incorrect (%)
	0.0000
	0.0000
	25.0000
	6.2500

	37.RBF 3-50-3
	Total
	7.0000
	5.0000
	4.0000
	16.0000

	
	Correct
	6.0000
	5.0000
	4.0000
	15.0000

	
	Incorrect
	1.0000
	0.0000
	0.0000
	1.0000

	
	Correct (%)
	85.7143
	100.0000
	100.0000
	93.7500

	
	Incorrect (%)
	14.2857
	0.0000
	0.0000
	6.2500

	48.RBF 3-50-3
	Total
	7.0000
	5.0000
	4.0000
	16.0000

	
	Correct
	6.0000
	5.0000
	4.0000
	15.0000

	
	Incorrect
	1.0000
	0.0000
	0.0000
	1.0000

	
	Correct (%)
	85.7143
	100.0000
	100.0000
	93.7500

	
	Incorrect (%)
	14.2857
	0.0000
	0.0000
	6.2500



Based on the selected network (RBF), we can create an automated control system for the crushing and grinding complex, considering the facility’s performance and power consumption to maintain the optimal mode. The structure of the control system of the crushing and grinding complex is shown in Fig. 3.


Fig. 3. Structural scheme of the control system of the crushing and grinding complex

The proposed structure of the control system envisages feedback on productivity and power consumption, which with the help of an artificial neural network, will assess the operating mode of the complex and form a control effect.
5. Conclusions
According to the research results, the following significant indicators were determined to assess the operation of the crushing and grinding complex, such as the performance of the complex, specific electricity consumption and the grinding load. Artificial neural networks such as MLP and RBF were trained based on the numerical values of significant indicators. The best indicators for solving the classification problem were shown by the RBF network, which indicates the advantages of such networks in their use to create automated control systems to identify the state of the complex. Increasing the number of parameters taken into account when determining the mode complicates the model and reduces its accuracy; therefore, when building control systems, it is advisable to use only the basic of the accepted parameters (performance and power consumption).
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